» » Что значит поле в физике. Фундаментальные физические поля

Что значит поле в физике. Фундаментальные физические поля

Поле (физика)

Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы .

Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда - величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

Также полем в физике называют физическую величину , рассматриваемую как зависящую от места, как полный набор вообще говоря разных значений для всех точек некоторого протяженного непрерывного тела - сплошной среды , описывающий в своей совокупности состояние или движение этого протяженного тела . Примером такого поля может быть

  • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) - (скалярное) поле температуры,
  • скорость всех элементов некоторого объема жидкости - векторное поле скоростей,
  • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.
Динамика таких полей также описывается дифференциальными уравнениями в частных производных , и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

Современная концепция физического поля выросла из идеи электромагнитного поля , впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем , математически же последовательно реализованной Максвеллом - изначально с использованием механической модели гипотетической сплошной среды - эфира , но затем вышедшей за рамки использования механической модели.

Фундаментальные поля

Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:

  • фундаментальные фермионные поля, прежде всего представляющие физическую основу описания вещества ,
  • фундаментальные бозонные поля (включая гравитационное, представляющее собой тензорное калибровочное поле), являющиеся расширением и развитием концепции максвелловского электромагнитного и ньютоновского гравитационного полей; на них строится теория фундаментальных взаимодействий .

Существуют теории (например, теория струн , различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, еще более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении, как "феноменологическое" следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.

История

Исторически среди фундаментальных полей сначала были открыты (именно в качестве физических полей ) поля, ответственные за электромагнитное (электрическое и магнитное поля, затем объединенные в электромагнитное поле), и гравитационное взаимодействие. Эти поля были открыты и достаточно детально изучены уже в классической физике. Вначале эти поля (в рамках ньютоновской теории тяготения, электростатики и магнитостатики) выглядели для большинства физиков скорее как формальные математические объекты, вводимые для формального же удобства, а не как полноценная физическая реальность, несмотря на попытки более глубокого физического осмысления, остававшиеся однако довольно туманными или не приносящими слишком существенных плодов . Но начиная с Фарадея и Максвелла подход к полю (в данном случае - к электромагнитному полю) как к вполне содержательной физической реальности стал применяться систематически и очень плодотворно, включая и существенный прорыв в математическом оформлении этих идей.

С другой стороны, по мере развития квантовой механики, становилось всё более ясно, что вещество (частицы) обладает свойствами, которые теоретически присущи именно полям.

Современное состояние

Таким образом, оказалось, что физическая картина мира может быть сведена в своем фундаменте к квантованным полям и их взаимодействию.

В какой-то мере, главным образом в рамках формализма интегрирования по траекториям и диаграмм Фейнмана , произошло и противоположное движение: поля стало можно в заметное мере представить как почти классические частицы (точнее - как суперпозицию бесконечного количества движущихся по всем мыслимым траекториям почти классических частиц), а взаимодействие полей друг с другом - как рождение и поглощение частицами друг друга (тоже с суперпозицией всех мыслимых вариантов такового). И хотя этот подход очень красив, удобен и позволяет во многом психологически вернуться представлению о частице как о старой доброй классической частице, имеющей вполне определенную траекторию, он, тем не менее, не может отменить полевой взгляд на вещи и даже не является полностью симметричной альтернативой ему (а поэтому всё же ближе к красивому, психологически и практически удобному, но всё же всего лишь формальному приему, чем к полностью самоcтоятельной концепции). Дело тут в двух ключевых моментах:

  1. процедура суперпозиции никак «физически» не объяснима в рамках по-настоящему классических частиц, она просто добавляется к почти классической «корпускулярной» картине, не являясь ее органическим элементом; в то же время с полевой точки зрения эта суперпозиция имеет ясную и естественную интерпретацию;
  2. сама частица, движущаяся по одной отдельной траектории в формализме интеграла по траекториям, хотя и очень похожа на классическую, но всё-таки классическая не до конца: к обычному классическому движению по определенной траектории с определенным импульсом и координатой в каждый конкретный момент даже для одной-единственной траектории - приходится добавлять совершенно чуждое для этого подхода в его чистом виде понятие фазы (то есть некоторого волнового свойства), и этот момент (хотя он действительно сведен к минимуму и о нем довольно легко просто не думать) также не имеет какой-то органичной внутренней интерпретации; а в рамках обычного полевого подхода такая интерпретация опять есть, и она опять органична.

Таким образом, можно заключить, что подход интегрирования по траекториям есть хотя и очень психологически удобная (ведь, скажем, точечная частица с тремя степенями свободы гораздо проще, чем бесконечномерное поле, которое ее описывает) и доказавшая практическую продуктивность, но всё же лишь некая переформулировка , пусть и довольно радикальная, полевой концепции, а не ее альтернатива.

И хотя на словах на этом языке всё выглядит очень «корпускулярно» (например: «взаимодействие заряженных частиц объясняются обменом другой частицей - переносчиком взаимодействия» или «взаимное отталкивание двух электронов обусловлено обменом между ними виртуальным фотоном»), однако за этим стоят такие типично полевые реальности, как распространение волн, пусть и достаточно хорошо спрятанные ради создания эффективной схемы вычислений, да во многом и давая дополнительные возможностеи качественного понимания.

Список фундаментальных полей

Еще более экзотические (например, лоренц-неинвариантные - нарушающие принцип относительности) поля (при том, что абстрактно-теоретически вполне мыслимы) в современной физике можно отнести к стоящим уже достаточно далеко за рамками аргументированного предположения, то есть, строго говоря, их не рассматривают даже в качестве гипотетических .

Традиционные варианты употребления термина поле

См. также

Примечания

  • Адрон (Адронная материя)
    • Барион +электрон (Барионная материя)
      • Атом , элемент (Химическое вещество)
  • Антивещество
    • Нейтронное вещество
  • Вещества с атомоподобным строением
  • Докварковые сверхплотные материальные образования
  • Поле

    • Поле ядерных сил

    Квантовые поля
    Материя неясной физической природы

    Естествоиспытатели и философы прошлого и настоящего времени пытались объяснить многообразие явлений природы с единых позиций. Так и в физике учёные стремились свести реальные силы к конечному числу фундаментальных взаимодействий. В настоящее время фундаментальными называют четыре типа взаимодействий, к которым сводятся все остальные.

    1.
    Сильное или ядерное взаимодействие U = De - a r /r. Здесь a=1/r o

    R o ~10 -14 м – характерное расстояние, на котором проявляется действие ядерных сил. Взаимодействие короткодействующее (на малых расстояниях), носит характер притяжения.

    2.
    Электромагнитное взаимодействие U кул = q 1 q 2 /r – дальнодействующее, носит характер притяжения в случае разноимённых зарядов. Отношение интенсивностей электромагнитного и ядерного взаимодействий I эм /I яд = 10 -2 .

    3.
    Слабое взаимодействие – короткодействующее I сл /I яд = 10 -14 .

    4.
    Гравитационное взаимодействие – дальнодействующее

    I грав /I яд = 10 -39 . U грав =Gm 1 m 2 /r – взаимодействие носит характер притяжения.

    Реальные силы. Силы упругости и силы трения

    Силы упругости.

    Силы упругости возникают как реакция на деформирование твердого тела. Определим некоторые понятия.

    Деформация (e)– относительное смещение точек тела.

    Упругое напряжение (s) – давление, возникающее в твердом теле при его деформировании s = F/S. Здесь S – площадка, на которую действует сила упругости F. Связь между напряжением и деформацией следующая:

    S I – область

    Соответствует упругим

    Деформациям. Здесь

    справедлив закон Гука:

    s=Ee, где Е - модуль

    I II III упругости.

    II – область неупругих


    • деформаций.

    III – область разрушения материала.

    Для тел стержнеобразной формы (стержни, балки, трубы)

    e = DL/L – относительное удлинение, Е – модуль Юнга. Сдвиговые напряжения s ^ связаны со сдвиговыми деформациями e ^ = DD/D (D – диаметр стержня) через модуль сдвига G: s ^ = Ge ^ . Гидродинамическое давление Р связано с относительным изменением объема через модуль всестороннего сжатия К:

    Р = КDV/V. Для изотропных тел независимыми модулями упругости будут только два. Остальные могут быть пересчитаны по известным формулам, например: Е = 2G(1 + m). Здесь m - коэффициент Пуассона.

    Природа сил упругости связана с фундаментальными электромагнитными взаимодействиями.

    Силы трения

    Силы, возникающие между поверхностями соприкасающихся тел, и препятствующие их относительному перемещению, называются силами трения. Параллельным переносом силу трения рисуют из точки центра тяжести тела. Она направлена против скорости относительного перемещения тел.

    Внешним или сухим трением называется трение, возникающее между твердыми телами. В свою очередь оно подразделяется на трение покоя и кинематическое трение (скольжения и качения). Сила трения покоя равна максимальной силе, которую следует приложить к твердому телу, чтобы только началось его перемещение. F тр = kN

    Здесь N – сила нормального давления.

    к Зависимость коэффициента

    трения от скорости переме-

    щения тел показана на

    рисунке. При малых

    скоростях перемещения

    V коэффициент трения сколь-

    жения и качения меньше коэффициента трения покоя.

    Трение покоя связано с упругим деформированием взаимодействующих тел. Трение скольжения и качения связаны с неупругим деформированием поверхностей тел и даже их частичным разрушением. Поэтому кинематическое

    трение сопровождается акустической эмиссией – шумом.

    Трение качения связано с неупругим

    деформированием тел. Тогда

    возникает горизонтальная составляющая

    силы реакции на деформирование N 2

    п оверхности под передней частью колеса – N 1

    это и есть сила трения качения.

    Способы уменьшения коэффициента трения:

    1.
    Замена трения скольжения трением качения.

    2.
    Замена сухого трения – вязким.

    3.
    Повышение качества обработки поверхностей трущихся деталей.

    4.
    Замена трения покоя – трением скольжения и трением качения путем применения звуковых и ультразвуковых вибраций.

    5.
    Использование полимернаполненных композиций на основе фторопласта.

    6. Гравитационное взаимодействие − самое слабое из четырёх фундаментальных взаимодействий. Согласно закону всемирного тяготения Ньютона сила гравитационного взаимодействия F g двух точечных масс m 1 и m 2 равна

    8. G = 6.67·10 -11 м 3 · кг –1 ·см –2 − гравитационная постоянная, r − расстояние между взаимодействующими массами m 1 и m 2 . Отношение силы гравитационного взаимодействия между двумя протонами к силе кулоновского электростатического взаимодействия между ними равно 10 -36 .
    Величина G 1/2 ·m называется гравитационным зарядом. Гравитационный заряд пропорционален массе тела. Поэтому для нерелятивистского случая согласно закону Ньютона ускорение, вызываемое силой гравитационного взаимодействия F g , не зависит от массы ускоряемого тела. Это утверждение составляет принцип эквивалентности .
    Фундаментальное свойство гравитационного поля состоит в том, что оно определяет геометрию пространства-времени, в котором движется материя. По современным представлениям взаимодействие между частицами происхо­дит путём обмена между ними частицами – переносчиками взаимодействия. Считается, что переносчиком гравитационного взаимодействия является гравитон − частица со спином J = 2. Экспериментально гравитон не обнаружен. Квантовая теория гравитации пока не создана.

    Все наши ежедневные действия сводятся к тому, что мы с помощью мышц либо приводим в движение окружа­ющие тела и поддерживаем это движение, либо же оста­навливаем движущиеся тела.

    Этими телами являются орудия труда (молоток, ручка, пила), в играх - мячи, шайбы, шахматные фигуры. На производстве и в сельском хозяйстве люди также приво­дят в движение орудия труда. Правда, в настоящее время роль рабочего все больше и больше сводится к управлению механизмами. Но в любой машине можно обнаружить по­добие простых орудий ручного труда. В швейной машинке имеется игла, резец токарного станка подобен рубанку, ковш экскаватора заменяет лопату.

    Двигатели. Применение машин во много раз увеличи­вает производительность труда благодаря использованию в них двигателей.

    Назначение любого двигателя в том, чтобы приводить тела в движение и поддерживать это движение, несмотря на торможение как обычным трением, так и «рабочим» со­противлением (резец должен не просто скользить по ме­таллу, а, врезаясь в него, снимать стружку; плуг должен взрыхлять землю и т. д.). При этом на движущееся тело должна действовать со стороны двигателя сила, точка при­ложения которой перемещается вместе с телом.

    Бытовое представление о работе. Когда человек (или какой-либо двигатель) действует с определенной силой на движущееся тело, то мы говорим, что он совершает работу. Это бытовое представление о работе легло в основу форми­рования одного из важнейших понятий механики - поня­тия работы силы.

    Работа совершается в природе всегда, когда на какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел). Так, сила тяготения совершает работу при падении капель дождя или камня с обрыва. Одновре­менно совершают работу и силы трения, действующие на падающие капли или на камень со стороны воздуха. Со­вершает работу и сила упругости, когда распрямляется со­гнутое ветром дерево.

    Определение работы. Второй закон Ньютона в форме позволяет определить, как меняется скорость тела по модулю и направлению, если на него в течение времени ∆t действует сила .

    Во многих случаях важно уметь вычислять изменение скорости по модулю, если при перемещении тела на на него действует сила .Воздействия на тела сил, приводя­щих к изменению модуля их скорости, характеризуются величиной, зависящей как от сил, так и от перемещений тел. Эту величину в механике и называют работой силы .

    В общем случае при движении твердого тела перемеще­ния его разных точек различны, но при определении работы силы мы под понимаем перемещение ее точки при­ложения. При поступательном движении твердого тела перемещение всех его точек совпадает с перемещением точки приложения силы.

    Материализация духов и раздача слонов.
    Входные билеты от 50 к. до 2 р.
    И. Ильф, Е Петров

    Что такое фундаментальные взаимодействия и фундаментальные поля? Почему фундаментальные поля можно считать одной из составляющих материи?

    Урок-лекция

    О том, что поле - это особый вид материи, можно прочитать во многих учебниках физики и даже в энциклопедическом словаре. А вот пояснения к этому утверждению встречаются далеко не всегда. Поэтому часто смысл сказанного остается непонятым. Попробуем разобраться в этом и «материализовать поле». Заметим, что приведенное выше утверждение относится не к любым полям, а только к фундаментальным. Что же такое фундаментальные поля?

    Фундаментальные взаимодействия и фундаментальные поля . Изучая физику, вы знакомились с различными силами - силой упругости, силой трения, силой тяжести. Каждая из этих сил характеризует некоторое взаимодействие между телами. Как вы знаете, развитие науки показало, что все макроскопические тела состоят из атомов и молекул (точнее, из ядер и электронов). Из атомно-молекулярной модели следует, что некоторые из взаимодействий между макроскопическими телами можно представить как результат взаимодействия между атомами и молекулами или, при еще большем углублении в структуру вещества, как результат взаимодействия между ядрами и электронами, входящими в состав макроскопических тел.

    В частности, такие силы, как сила упругости и сила трения, есть результат сил, действующих между электронами и ядрами. А вот гравитационные взаимодействия и электромагнитные взаимодействия свести к каким-то другим взаимодействиям не удалось, хотя такие попытки и предпринимались.

    Для характеристики взаимодействий, которые не сводятся к другим взаимодействиям, стали использовать понятие фундаментальные , что означает «основные».

    Как говорилось в предыдущем параграфе, фундаментальные гравитационное и электромагнитное взаимодействия можно рассматривать _ на основе взаимодействия с полем. Поля, соответствующие фундаментальным взаимодействиям, стали называть фундаментальными полями .

    Фундаментальными взаимодействиями являются гравитационное и электромагнитное взаимодействия.

    Развитие науки показало, что гравитационное и электромагнитное взаимодействия не единственные фундаментальные взаимодействия. В настоящее время обнаружено четыре фундаментальных взаимодействия. О двух других фундаментальных взаимодействиях мы узнаем при изучении микромира.

    Электромагнитное и гравитационное поля - это фундаментальные поля, которые не могут быть сведены к движению каких-либо частиц.

    Дальнодействие и близкодействие . Мы уже знаем, что взаимодействие между частицами (заряженными и незаряженными) можно описывать при помощи полей, но можно и не вводить понятие поля. Концепцию, в соответствии с которой взаимодействие между частицами описывают напрямую, без введения понятия поля, называют концепцией дальнодействия. Название это означает, что частицы взаимодействуют на далеком расстоянии. Наоборот, вторую концепцию, в соответствии с которой взаимодействие осуществляется через посредство поля (гравитационного и электромагнитного), называют концепцией близко-действия. Смысл понятия близкодействия заключается в том, что частица взаимодействует с полем, которое имеется вблизи нее, хотя само это поле может создаваться частицами, находящимися очень далеко (рис. 13).

    Рис. 13. Иллюстрация взаимодействия на основе концепции дальнодействия (а) и концепции близкодействия (б. в)

    В первом случае (см. рис. 13, а) на заряд q действует сила F со стороны заряда Q, находящегося на расстоянии r. Во втором случае заряд Q создает в пространстве вокруг себя поле Е(х, у, z). В частности, в точке с координатами х 0 , у 0 , z 0 , где находится заряд q, создается поле Е(х 0 , у 0 , z 0) (см. рис. 13, б). Это поле, а не непосредственно заряд Q взаимодействует с зарядом q (см. рис. 13, в).

    Исторически знания о природе развивались таким образом, что концепция близкодействия, предложенная в 30-е гг. XIX в, английским физиком М. Фарадеем, воспринималась лишь как удобное описание.

    Положение принципиально изменилось после открытия электромагнитных волн, распространяющихся с конечной скоростью - скоростью света. Из теории электромагнитных волн следовало, что любое изменение электромагнитного поля распространяется через пространство также со скоростью света. Обращаясь к примеру, приведенному на рисунке 13, можно сказать, что если заряд Q в какой-то момент времени начнет движение, то заряд q «ощутит» изменение действующей на него силы не в тот же момент времени, а спустя время r/с (с - скорость света), т. е. время, необходимое для того, чтобы электромагнитная волна дошла от заряда Q до заряда q.

    Конечность распространения электромагнитных волн приводит к тому, что описание электромагнитного взаимодействия на основе концепции дальнодействия становится неудобным.

    Чтобы понять это, рассмотрим следующий пример. В 1054 г. на небосводе появилась яркая звезда, свет которой наблюдался даже днем в течение нескольких недель. Затем звезда угасла, и в настоящее время в районе небесной сферы, где находилась звезда, отмечается слабо светящееся образование, которое получило название Крабовидной туманности. В соответствии с современными представлениями об эволюции звезд произошла вспышка звезды, во время которой ее мощность излучения увеличилась в миллиарды раз, после чего звезда распалась. На месте ярко светящейся звезды образовались практически не излучающая нейтронная звезда и расширяющееся облако слабо светящегося газа.

    С точки зрения концепции близкодействия наблюдение света звезды сводится к следующему. Заряды, находящиеся на звезде, создали поле, которое в виде волны дошло до Земли и оказало воздействие на электроны в сетчатке глаза наблюдателя. При этом волна достигла Земли за сотни лет. Люди наблюдали вспышку звезды, когда самой звезды уже не было. Если попробовать описать это наблюдение на основе концепции дальнодействия, то приходится считать, что заряды в сетчатке глаза взаимодействуют не с зарядами звезды, а с теми, которые когда-то были на звезде, которой уже нет. Заметим, что в процессе образования нейтронной звезды многие заряды исчезают, поскольку из электронов и протонов образуются нейтроны - нейтральные частицы, практически не участвующие в электромагнитном взаимодействии. Согласитесь, что описание на основе взаимодействия с тем, что когда-то было, но не существует в настоящий момент времени, «не очень удобное».

    Другая причина признать поле материальным связана с тем, что электромагнитная волна переносит через пространство энергию и импульс (подробнее см. § 57). Если поле не считать материальным, то следует признать, что энергия и импульс не связаны с чем-то материальным и сами по себе переносятся через пространство.

    Сформулированная в 1905 г. Альбертом Эйнштейном теория относительности базируется на постулате, в соответствии с которым не существует взаимодействий (в том числе и фундаментальных), распространяющихся быстрее света.

    Мы начали этот параграф с «материализации духов». Физики - народ остроумный, и понятие «духи» уже используется в современной теории поля. Можно сказать, что пока еще эти духи не материализованы, т. е. не наблюдаются на опыте. Но и наука о фундаментальных полях пока еще не завершена.

    Конечность распространения фундаментальных полей и их связь с энергией и импульсом (перенос энергии и импульса этими полями) приводят к признанию этих полей в качестве одной из составляющих материи. Материя, таким образом, представлена частицами (веществом) и фундаментальными полями.

    • Какой смысл заложен в понятия «фундаментальные поля» и «фундаментальные взаимодействия»?
    • Приведите примеры полей, не являющихся фундаментальными.
    • Подумайте и приведите примеры нефундаментальных взаимодействий.

    Полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор соответствующего названия.

    Полевая парадигма , представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей .

    Проще всего наглядно представить себе поле (когда речь идет, например, о фундаментальных полях, не имеющих очевидной непосредственной механической природы ) как возмущение (отклонение от равновесия, движение) некоторой (гипотетической или просто воображаемой) сплошной среды, заполняющей всё пространство. Например, как деформацию упругой среды, уравнения движения которой совпадают с или близки к полевым уравнениям того более абстрактного поля, которое мы хотим наглядно себе представить. Исторически такая среда называлась эфиром, однако впоследствии термин практически полностью вышел из употребления , а его подразумеваемая физически содержательная часть слилась с самим понятием поля. Тем не менее, для принципиального наглядного понимания концепции физического поля в общих чертах такое представление полезно, с учетом того, что в рамках современной физики такой подход обычно принимается по большому счету лишь на правах иллюстрации .

    Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы .

    Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда - величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

    Также полем в физике называют физическую величину , рассматриваемую как зависящую от места: как полный набор, вообще говоря, разных значений этой величины для всех точек некоторого протяженного непрерывного тела - сплошной среды , описывающий в своей совокупности состояние или движение этого протяженного тела . Примерами таких полей может быть:

    • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) - (скалярное) поле температуры,
    • скорость всех элементов некоторого объёма жидкости - векторное поле скоростей,
    • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.

    Динамика таких полей также описывается дифференциальными уравнениями в частных производных , и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

    Современная концепция физического поля выросла из идеи электромагнитного поля , впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем , математически же последовательно реализованной Максвеллом - изначально с использованием механической модели гипотетической сплошной среды - эфира , но затем вышедшей за рамки использования механической модели.

    Фундаментальные поля

    Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:

    • фундаментальные фермионные поля , прежде всего представляющие физическую основу описания вещества ,
    • фундаментальные бозонные поля (включая гравитационное, представляющее собой тензорное калибровочное поле), являющиеся расширением и развитием концепции максвелловского электромагнитного и ньютоновского гравитационного полей; на них строится теория .

    Существуют теории (например, теория струн , различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, ещё более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении как «феноменологическое» следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.

    История

    Исторически среди фундаментальных полей сначала были открыты (именно в качестве физических полей ) поля, ответственные за электромагнитное (электрическое и магнитное поля, затем объединенные в электромагнитное поле), и гравитационное взаимодействие. Эти поля были открыты и достаточно детально изучены уже в классической физике. Вначале эти поля (в рамках ньютоновской теории тяготения, электростатики и магнитостатики) выглядели для большинства физиков скорее как формальные математические объекты, вводимые для формального же удобства, а не как полноценная физическая реальность, несмотря на попытки более глубокого физического осмысления, остававшиеся однако довольно туманными или не приносящими слишком существенных плодов . Но начиная с Фарадея и Максвелла подход к полю (в данном случае - к электромагнитному полю) как к вполне содержательной физической реальности стал применяться систематически и очень плодотворно, включая и существенный прорыв в математическом оформлении этих идей.

    С другой стороны, по мере развития квантовой механики становилось всё более ясно, что вещество (частицы) обладает свойствами, которые теоретически присущи именно полям.

    Современное состояние

    Таким образом, оказалось, что физическая картина мира может быть сведена в своем фундаменте к квантованным полям и их взаимодействию.

    В какой-то мере, главным образом в рамках формализма интегрирования по траекториям и диаграмм Фейнмана , произошло и противоположное движение: поля стало можно в заметной мере представить как почти классические частицы (точнее - как суперпозицию бесконечного количества движущихся по всем мыслимым траекториям почти классических частиц), а взаимодействие полей друг с другом - как рождение и поглощение частицами друг друга (тоже с суперпозицией всех мыслимых вариантов такового). И хотя этот подход очень красив, удобен и позволяет во многом психологически вернуться к представлению о частице, имеющей вполне определённую траекторию, он, тем не менее, не может отменить полевой взгляд на вещи и даже не является полностью симметричной альтернативой ему (а поэтому всё же ближе к красивому, психологически и практически удобному, но всё же всего лишь формальному приему, чем к полностью самостоятельной концепции). Дело тут в двух ключевых моментах:

    1. процедура суперпозиции никак «физически» не объяснима в рамках по-настоящему классических частиц, она просто добавляется к почти классической «корпускулярной» картине, не являясь её органическим элементом; в то же время с полевой точки зрения эта суперпозиция имеет ясную и естественную интерпретацию;
    2. сама частица, движущаяся по одной отдельной траектории в формализме интеграла по траекториям, хотя и очень похожа на классическую, но всё-таки классическая не до конца: к обычному классическому движению по определённой траектории с определённым импульсом и координатой в каждый конкретный момент даже для одной-единственной траектории - приходится добавлять совершенно чуждое для этого подхода в его чистом виде понятие фазы (то есть некоторого волнового свойства), и этот момент (хотя он действительно сведен к минимуму и о нём довольно легко просто не думать) также не имеет какой-то органичной внутренней интерпретации; а в рамках обычного полевого подхода такая интерпретация опять есть, и она опять органична.

    Таким образом, можно заключить, что подход интегрирования по траекториям есть хотя и очень психологически удобная (ведь, скажем, точечная частица с тремя степенями свободы гораздо проще, чем бесконечномерное поле, которое её описывает) и доказавшая практическую продуктивность, но всё же лишь некая переформулировка , пусть и довольно радикальная, полевой концепции, а не её альтернатива.

    И хотя на словах на этом языке всё выглядит очень «корпускулярно» (например: «взаимодействие заряженных частиц объясняются обменом другой частицей - переносчиком взаимодействия» или «взаимное отталкивание двух электронов обусловлено обменом между ними виртуальным фотоном»), однако за этим стоят такие типично полевые реальности, как распространение волн, пусть и достаточно хорошо спрятанные ради создания эффективной схемы вычислений, да во многом и давая дополнительные возможности качественного понимания.

    Список фундаментальных полей

    Фундаментальные бозонные поля (поля - переносчики фундаментальных взаимодействий)

    Эти поля в рамках стандартной модели являются калибровочными полями . Известны такие их типы:

    • Электрослабое
      • Электромагнитное поле (см. тж. Фотон)
      • Поле - переносчик слабого взаимодействия (см. тж. W- и Z-бозоны)
    • глюонное поле (см. тж. Глюон)

    Гипотетические поля

    Гипотетическими в широком смысле можно считать любые теоретические объекты (например, поля), которые описываются теориями, не содержащими внутренних противоречий, явно не противоречащими наблюдениям и способными в то же время дать наблюдаемые следствия, позволяющие сделать выбор в пользу этих теорий по сравнению с теми, которые приняты сейчас. Ниже мы будем говорить (и это в целом соответствует обычному пониманию термина) в основном о гипотетичности в этом более узком и строгом смысле, подразумевающем обоснованность и фальсифицируемость предположения, которое мы называем гипотезой.

    В теоретической физике рассматривается множество различных гипотетических полей, каждое из которых является принадлежностью вполне конкретной определённой теории (по своему типу и математическим свойствам эти поля могут быть совсем или почти такими же, как известные не гипотетические поля, а могут более или менее сильно отличаться; в том и другом случае под их гипотетичностью имеется в виду то, что они пока не наблюдались в реальности, не были обнаружены экспериментально; в отношении части гипотетических полей может стоять вопрос о том, могут ли они наблюдаться в принципе, и даже могут ли они вообще существовать - например, если теория, в которой они присутствует, вдруг окажется внутренне противоречивой).

    Вопрос о том, что следует считать критерием, позволяющим перенести некое конкретное поле из разряда гипотетических в разряд реальных, довольно тонок, поскольку подтверждения той или иной теории и реальности тех или иных объектов, в ней содержащихся, бывают зачастую более или менее косвенными. В этом случае дело сводится обычно к какому-то разумному соглашению научного сообщества (члены которого более или менее детально сознают, о какой степени подтвержденности на самом деле идет речь).

    Даже в теориях, считающихся достаточно хорошо подтвержденными, находится место гипотетическим полям (тут речь идет о том, что разные части теории проверены с разной степенью тщательности, и некоторые поля, играющие в них в принципе важную роль, пока не проявились в эксперименте достаточно определённо, то есть пока выглядят именно как гипотеза, придуманная для тех или иных теоретических целей, в то время как другие поля, фигурирующие в той же теории, изучены уже достаточно хорошо, чтобы говорить о них как о реальности).

    Примером такого гипотетического поля является поле Хиггса , являющееся важным в Стандартной модели , остальные поля которой отнюдь не являются гипотетическими, а сама модель, пусть и с неизбежными оговорками, считается описывающей реальность (по крайней мере, до той степени, в какой реальность известна).

    Существует множество теорий, содержащих поля, которые (пока) никогда не наблюдались, а иногда сами же эти теории дают такие оценки, что их гипотетические поля по-видимому (из-за слабости их проявления, следующей из самой теории) и не могут в принципе быть обнаружены в обозримом будущем (например, торсионное поле). Такие теории (если не содержат, кроме практически непроверяемых, ещё и достаточного количества легче проверяемых следствий) не рассматриваются как представляющие практический интерес, если только не всплывет какой-то нетривиальный новый способ их проверки, позволяющий обойти очевидные ограничения. Иногда же (как, например, во многих альтернативных теориях гравитации - например, поле Дикке) вводятся такие гипотетические поля, о силе проявления которых сама теория вообще не может ничего сказать (например, константа связи этого поля с другими неизвестна и может быть как довольно большой, так и сколь угодно малой); с проверкой таких теорий обычно также не торопятся (поскольку таких теорий много, а своей полезности каждая из них ничем не доказала, и даже формально нефальсифицируема), за исключением случаев, когда какая-то из них не начинает по каким-то причинам казаться перспективной для разрешения каких-то текущих затруднений (впрочем, от отсеивания теорий на основании нефальсифицируемости - особенно из-за неопределенных констант - тут иногда отказываются, так как серьезная добротная теория иногда может быть проверена в надежде, что её эффект обнаружится, хотя гарантий этого и нет; особенно это верно, когда теорий-кандидатов вообще немного или некоторые из них выглядят особенно фундаментально интересными; также - в случаях, когда можно проверять теории широкого класса все сразу по известным параметрам, не тратя специальных усилий на проверку каждой в отдельности).

    Следует также заметить, что принято называть гипотетическими лишь такие поля, которые совсем не имеют наблюдаемых проявлений (или имеют их недостаточно, как в случае с полем Хиггса). Если же существование физического поля твердо установлено по его наблюдаемым проявлениям, и речь идет лишь об улучшении его теоретического описания (например, о замене ньютоновского гравитационного поля на поле метрического тензора в ОТО), то говорить о том или другом как о гипотетических обычно не принято (хотя для ранней ситуации в ОТО можно было говорить о гипотетическом характере тензорной природы гравитационного поля).

    В заключение упомянем о таких полях, сам тип которых достаточно необычен, то есть теоретически вполне мыслим, но никакие поля подобных типов никогда не наблюдались на практике (а в некоторых случаях на ранних этапах развития их теории могли возникать и сомнения в её непротиворечивости). К таким, прежде всего, следует отнести тахионные поля . Собственно, тахионные поля можно назвать скорее лишь потенциально гипотетическими (то есть не достигающими статуса обоснованного предположения ), так как известные конкретные теории, в которых они играют более или менее существенную роль, например, теория струн , сами не достигли статуса достаточно подтвержденных .

    Ещё более экзотические (например, лоренц-неинвариантные - нарушающие принцип относительности) поля (при том, что абстрактно-теоретически вполне мыслимы) в современной физике можно отнести к стоящим уже достаточно далеко за рамками аргументированного предположения, то есть, строго говоря, их не рассматривают даже в качестве

    М. Фарадей вошел в науку исключительно благодаря таланту и усердию в самообразовании. Выходец из бедной семьи, он работал в переплетной мастерской, где познакомился с трудами ученых, философов. Известный английский физик Г.Дэви (1778-1829), который способствовал вхождению М. Фарадея в научное сообщество, однажды сказал, что самым крупным его достижением в науке является «открытие» им М. Фарадея. М. Фарадей изобрел электродвигатель и электрогенератор, т. е. машины для производства электричества. Ему принадлежит идея о том, что электричество имеет единую физическую природу, т. е. независимо от того, каким образом оно получено: движением магнита или прохождением электрически заряженных частиц в проводнике. Для объяснения взаимодействия между электрическими зарядами на расстоянии М. Фарадей ввел понятие физического поля. Физическое поле он представлял как свойство самого пространства вокруг электрически заряженного тела оказывать физическое воздействие на другое заряженное тело, помещенное в это пространство. С помощью металлических частиц он показал расположение и наличие сил, действующих в пространстве вокруг магнита (магнитных сил) и электрического заряженного тела (электрических). Свои идеи о физическом поле М. Фарадей изложил в письме-завещании, которое было вскрыто лишь в 1938 г. в присутствии членов Лондонского Королевского общества. В этом письме было обнаружено, что М. Фарадей владел методикой изучения свойств поля и в его теории электромагнитные волны распространяются с конечной скоростью. Причины, по которым он изложил свои идеи о физическом поле в форме письма- завещания, возможно, следующие. Представители французской физической школы требовали от него теоретического доказательства связи электрических и магнитных сил. Кроме того, понятие физического поля, по М. Фарадею, означало, что распространение электрических и магнитных сил осуществляется непрерывным образом от одной точки поля к другой и, следовательно, эти силы имеют характер близкодействующих сил, а не дальнодействующих, как полагал Ш. Кулон. М. Фарадею принадлежит еще одна плодотворная идея. При изучении свойств электролитов он обнаружил, что электрический заряд частиц, образующих электричество, не является дробным. Эта идея была подтверждена



    определением заряда электрона уже в конце XIX в.

    Теория электромагнитных сил Д. Максвелла

    Подобно И. Ньютону Д. Максвелл придал всем результатам исследований электрических и магнитных сил теоретическую форму. Произошло это в 70-х годах XIX в. Он сформулировал свою теорию на основе законов связи взаимодействия электрических и магнитных сил, содержание которых можно представить таким образом:

    1. Любой электрический ток вызывает или создает магнитное поле в окружающем его пространстве. Постоянный электрический ток создает постоянное магнитное поле. Но постоянное магнитное поле (неподвижный магнит) не может создавать электрическое поле вообще (ни постоянное, ни переменное).

    2. Образовавшееся переменное магнитное поле создает переменное электрическое поле, которое, в свою очередь, создает переменное магнитное поле,

    3. Силовые линии электрического поля замыкаются на электрических зарядах.

    4. Силовые линии магнитного поля замкнуты сами на себя и никогда не кончаются, т. е. не существует в природе магнитных зарядов.

    В уравнениях Д. Максвелла присутствовала некоторая постоянная величина С, которая указывала, что скорость распространения электромагнитных волн в физическом поле является конечной и совпадает со скоростью распространения света в вакууме, равной 300 тыс. км/с.

    Основные понятия и принципы электромагнетизма.

    Теория Д. Максвелла была воспринята некоторыми учеными с большим сомнением. Например, Г. Гельмгольц (1821-1894) придерживался точки зрения, согласно которой электричество является «невесомым флюидом», распространяющимся с бесконечной скоростью. По его просьбе Г. Герц (1857-

    1894) занялся экспериментом, доказывающим флюидную природу электричества.

    К этому времени О. Френель (1788-1827) показал, что свет распространяется не как продольные, а как поперечные волны. В 1887 г. Г. Герцу удалось построить эксперимент. Свет в пространстве между электрическими зарядами распространялся поперечными волнами со скоростью 300 тыс. км/с. Это позволило ему говорить о том, что его эксперимент устраняет сомнения в тождественности света, теплового излучения и волнового электромагнитного движения.

    Этот эксперимент стал основой для создания электромагнитной физической картины мира, одним из приверженцев которой был Г. Гельмгольц. Он полагал, что все физические силы, господствующие в природе, должны быть объяснены на основе притяжения и отталкивания. Однако создание электромагнитной картины мира столкнулось с трудностями.

    1. Основным понятием механики Галилея - Ньютона было понятие вещества,

    имеющего массу, но оказалось, что вещество может обладать зарядом.

    Заряд - это физическое свойство вещества создавать вокруг себя физическое поле, оказывающее физическое воздействие на другие заряженные тела, вещества (притяжение, отталкивание).

    2. Заряд и масса вещества могут иметь разную величину, т. е. являются дискретными величинами. В то же время понятие физического поля предполагает передачу физического взаимодействия непрерывно от одной его точки к другой. Это означает, что электрические и магнитные силы являются близкодействующими силами, поскольку в физическом поле нет пустого пространства, не заполненного электромагнитными волнами.

    3. В механике Галилея - Ньютона возможна бесконечно большая скорость

    физического взаимодействия, здесь же утверждается, что электромагнитные

    волны распространяются с большой, но конечной скоростью.

    4. Почему сила гравитации и сила электромагнитного взаимодействия действуют независимо друг от друга? При удалении от Земли сила тяжести уменьшается, ослабевает, а электромагнитные сигналы действуют в космическом корабле точно таким же образом, как и на Земле. В XIX в. можно было привести столь же убедительный пример без космического корабля.

    5. Открытие в 1902г. П.Лебедевым (1866-1912) - профессором Московского университета - светового давления обострило вопрос о физической природе света: является ли он потоком частиц или только электромагнитными волнами определенной длины? Давление, как физическое явление, связано с понятием вещества, с дискретностью - точнее. Таким образом, давление света свидетельствовало о дискретной природе света как потока частиц.

    6. Сходство убывания гравитационных и электромагнитных сил - по закону

    «обратно пропорционально квадрату расстояния» - вызывало законный вопрос: почему квадрат расстояния, а, например, не куб? Некоторые ученые стали говорить об электромагнитном поле как об одном из состояний «эфира», заполняющего пространство между планетами и звездами.

    Все эти трудности происходили из-за отсутствия в тот период знаний о строении атома, но М. Фарадей был прав, говоря, что, не зная, как устроен атом, мы можем изучать явления, в которых выражается его физическая природа. Действительно электромагнитные волны несут существенную информацию о процессах, происходящих внутри атомов химических элементов и молекул вещества. Они представляют информацию о далеком прошлом и настоящем Вселенной: о температуре космических тел, их химическом составе, расстоянии до них и т. д.

    7. В настоящее время используется следующая шкала электромагнитных волн:

    радиоволны с длиной волны от 104 до 10 -3 м;

    инфракрасные волны - от 10-3 до 810-7 м;

    видимый свет - от 8 10-7 до 4 10-7 м;

    ультрафиолетовые волны - от 4 10-7 до 10-8 м;

    рентгеновские волны (лучи) - от 10-8 до 10-11 м;

    гамма-излучение - от 10-11 до 10-13 м.

    8. Что касается практических аспектов изучения электрических и магнитных сил, то оно осуществлялось в XIX в. быстрыми темпами: первая телеграфная линия между городами (1844), прокладка перового трансатлантического кабеля (1866), телефон (1876), лампа накаливания (1879), радиоприемник (1895).

    Минимальной порцией электромагнитной энергии является фотон. Это самое малое неделимое количество электромагнитного излучения.

    Сенсацией начала XXI в. является создание российскими учеными из г. Троицка (Подмосковье) полимера из атомов углерода, который обладает свойствами магнита. Обычно считалось, что наличие металлов в веществе ответственно за магнитные свойства. Проверка этого полимера на металличность показала, что в нем нет присутствия металлов.