» » Пиролиз углеводородов. Химические свойства алканов Крекинг пропана уравнение реакции

Пиролиз углеводородов. Химические свойства алканов Крекинг пропана уравнение реакции
  • Химические свойства любого соединения определяются его строением, т.е. природой входящих в его состав атомов и характером связей между ними .

Во-первых, предельная насыщенность алканов не допускает реакций присоединения, но не препятствует реакциям разложения, изомеризации и замещения .

Во-вторых, симметричность неполярных С–С и слабополярных С–Н ковалентных связей предполагает их гомолитический (симметричный) разрыв на свободные радикалы.

Следовательно, для реакций алканов характерен радикальный механизм .

Поскольку гетеролитический разрыв связей С–С и С–Н в обычных условиях не происходит, то в ионные реакции алканы практически не вступают. Это проявляется в их устойчивости к действию полярных реагентов (кислот, щелочей, окислителей ионного типа: КMnO 4 , К 2 Сr 2 O 7 и т.п.). Такая инертность алканов в ионных реакциях и послужила ранее основанием считать их неактивными веществами и назвать парафинами.

Видео YouTube

2. Изомеризация алканов

Алканы нормального строения под влиянием катализаторов и при нагревании способны превращаться в разветвленные алканы без изменения состава молекул, т.е. вступать в реакции изомеpизации. В этих pеакциях участвуют алканы, молекулы которых содержат не менее 4-х углеродных атомов.

Например, изомеризация н-пентана в изопентан (2-метилбутан) происходит при 100°С в присутствии катализатора хлорида алюминия:

Исходное вещество и продукт реакции изомеризации имеют одинаковые молекулярные формулы и являются структурными изомерами (изомерия углеродного скелета).

3. Дегидрирование алканов

При нагревании алканов в присутствии катализаторов (Pt, Pd, Ni, Fe, Cr 2 O 3 , Fe 2 O 3 , ZnO) происходит их каталитическое дегидрирование – отщепления атомов водорода за счет разрыва связей С-Н.

    Строение продуктов дегидрирования зависит от условий реакции и длины основной цепи в молекуле исходного алкана.

1. Низшие алканы, содержащие в цепи от 2-х до 4-х атомов углерода, при нагревании над Ni-катализатором отщепляют водород отсоседних углеродных атомов и превращаются в алкены :


    Наряду с бутеном-2 в этой реакции образуется бутен-1 CH 2 =CH-CH 2 -CH 3 .
    В присутствии катализатора Cr 2 O 3 /Al 2 O 3 при 450-650 °С из н -бутана получают также бутадиен-1,3 CH 2 =CH-CH=CH 2 .

2. Алканы, содержащие в основной цепи больше 4-х атомов углерода, используются для получения циклических соединений. При этом происходит дегидроциклизация – реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

3. При 1500 °С происходит межмолекулярное дегидрирование метана по схеме:


4. Реакции окисления алканов

В органической химии реакции окисления и восстановления рассматриваются как реакции, связанные с потерей и приобретением органическим соединением атомов водорода и кислорода . Эти процессы, естественно, сопровождаются изменением степеней окисления атомов.

Окисление органического вещества - введение в его состав кислорода и (или) отщепление водорода. Восстановление - обратный процесс (введение водорода и отщепление кислорода). Учитывая состав алканов (С n H 2n+2), можно сделать вывод о их неспособности вступать в реакции восстановления, но возможности участвовать в реакциях окисления.

Алканы - соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н 2 Cr 2 O 7 , KMnO 4 и т.п.). При внесении в открытое пламя алканы горят. При этом в избытке кислорода происходит их полное окисление до СО 2 , где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С-С и С-Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

Примеры:

Низшие (газообразные) гомологи – метан, этан, пропан, бутан – легко воспламеняются и образуют с воздухом взрывоопасные смеси, что необходимо учитывать при их использовании. С увеличением молекулярной массы алканы загораются труднее.

Процесс горения углеводородов широко используется для получения энергии (в двигателях внутреннего сгорания, в тепловых электростанциях и т.п.).

Уравнение реакции горения алканов в общем виде:

Из этого уравнения следует, что с увеличением числа углеродных атомов (n ) в алкане увеличивается количество кислорода, необходимого для его полного окисления. При горении высших алканов (n >>1) кислорода, содержащегося в воздухе, может оказаться недостаточно для их полного окисления до СО 2 . Тогда образуются продукты частичного окисления :

  • угарный газ СО (степень окисления углерода +2),
  • сажа (мелкодисперсный углерод, нулевая степень окисления).

Поэтому высшие алканы горят на воздухе коптящим пламенем , а выделяющийся попутно токсичный угарный газ (без запаха и цвета) представляет опасность для человека.

Горение метана при недостатке кислорода происходит по уравнениям:

Последняя реакция используется в промышленности для получения сажи из природного газа, содержащего 80-97% метана.

Частичное окисление алканов при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С-С и С-Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов. Например, при неполном окислении бутана (разрыв связи С 2 -С 3) получают уксусную кислоту:

В ысшие алканы (n>25) под действием кислорода воздуха в жидкой фазе в присутствии солей марганца превращаются в смесь карбоновых кислот со средней длиной цепи С 12 -С 18 , которые используются для получения моющих средств и поверхностно-активных веществ.

Важное значение имеет реакция взаимодействия метана с водяным паром, в результате которой образуется смесь оксида углерода (II) с водородом - "синтез-газ":

Эта реакция используется для получения водорода. Синтез-газ служит сырьем для получения различных углеводородов.


5. Реакции замещения

В молекулах алканов связи C-Н пространственно более доступны для атаки другими частицами, чем менее прочные связи C-C. В определенных условиях происходит разрыв именно С-Н-связей и осуществляется замена атомов водорода на другие атомы или группы атомов.

1. Галогенирование

Галогенирование алканов – реакция замещения одного или более атомов водорода в молекуле алкана на галоген. Продукты реакции называют галогеналканами или галогенопроизводными алканов. Реакция алканов с хлором и бромом идет на свету или при нагревании.

Хлорирование метана :

Этилен прочно занимает первое место по общему объему произ­водства среди всех других продуктов нефтехимического синтеза. Мировое производство этилена в 1990 году превышало 50 млн. тонн в год, из них в США - 17,5 млн. тонн, а в Великобритании 1,5 млн. тонн. Этилен получают в результате термического крекинга этана, пропана, а также фракций нафты и газойля. В странах, богатых природным газом или импортирующим его в большом количестве, для крекинга пред­почитают использовать в качестве сырья этан, пропан и в меньшей степени нафту. Такая технология производства получила развитие в СССР и США. В странах Западной Европы и в Японии этилен и пропилен получают, главным образом, в результате крекинга фракции нафты.

Принципиальная схема термического крекинга очень проста: смесь нагретых газообразных углеводородов и перегретого водяного пара пропускают через стальной трубчатый реактор с большим количеством стальных труб, нагретых до 750-900 о С с такой скоростью, чтобы время контакта паров с нагретой поверхностью было в диапазоне 0,2-0,8 сек. Далее продукты крекинга резко охлаждают для того, чтобы избежать дальнейшей деструкции. Охлаждение газообразных продуктов крекинга достигается пропусканием газовой струи через трубы, орошаемые водой. Это позволяет сократить энергетические затраты для получения пере­гретого водяного пара. В таблице 28.3 приведено распределение продук­тов промышленного термического крекинга этана, пропана, а также фракций нафты и газойля.

Таблица 28.3

Типовое распределение продуктов (в %) термического крекинга этана, пропана, нафты и газойля

Продукты крекинга

CH 3 CH 2 CH=CH 2 и

CH 3 CH 2 CH 2 CH 3

топливная нефть

В основе термического крекинга лежат цепные радикальные реакции. При нагревании до 600° и выше углерод-углеродная связь в этане рас­щепляется с образованием двух метильных радикалов.

В алкильных радикалах связь С-Н, расположенная в b-положении по от­ношению к неспаренному электрону, является наиболее слабой, и для свободных алкильных радикалов наиболее типичными являются реакции b-распада, в результате которых всегда получаются алкен и более короткий свободный радикал. b-Распад этил-радикала приводит к эти­лену и атому водорода.

Атом водорода вновь отщепляет водород от этана.

Стадии (1) и (2) представляют собой типичные реакции роста цепи в цепном радикальном процессе крекинга этана. Любая рекомбинация радикалов приводит к обрыву цепи.

Продукты крекинга этана, содержащие более двух атомов углерода, получаются только из продуктов обрыва цепи.

Крекинг пропана осуществляется по принципиально аналогичной схеме.

Развитие цепи происходит в результате отщепления атома водорода от пропана при взаимодействии с метильным радикалом или атомом водорода. В отличие от этана из пропана при этом получаются два радикала: н -пропил СН 3 СН 2 СН 2 . и вторичный изо -пропил-радикал (СН 3) 2 СН . . Изопропил-радикал стабилизируется в результате отщепления атома водорода, который далее принимает участие в росте цепи.

Первичный н -пропил-радикал подвергается b-распаду с образованием этилена и метил-радикала, который продолжает цепной процесс крекин­га пропана.

Термический крекинг нафты и газойля принципиально ничем не отличается от расщепления пропана, различие заключается лишь в том, что процесс-b-распада с расщеплением углерод-углеродной связи происходит многократно, например:

Рост цепи в этом случае связан не с гомолизом С-С связи в алкане, а с отщеплением атома водорода от алкана с помощью радикалов . CH 3 , . CH 2 CH 3 и в редких случаях под действием атома водорода. Отщепление атома водорода от алкана с длинной цепью атомов угле­рода обычно приводит к вторичному радикалу, например:

Расщепление углерод-углеродной связи в таком радикале при b-распаде приводит к алкену и более короткому первичному радикалу.

Атом водорода или небольшие радикалы, такие как СН 3 . и СН 3 СН 2 . , участвуют в дальнейшем развитии цепного крекинга алканов.

Количество этилена, образующегося при крекинге разветвленных алканов, должно быть значительно ниже, чем при расщеплении н -алканов. Это легко проследить на примере термического крекинга 4-этил-гептана, одного из изомерных нонанов. Наибольший выход этилена при термическом крекинге н -алканов достигается при максимально повторяющихся процессах b-распада. Но с реакциями b-распада конкурируют процессы обрыва цепи и переноса цепи, когда радикал отщепляет атом водорода от исходного алкана. Так как оба конкурирующих процесса, обрыва и переноса цепи, бимолекулярны, их скорость относительно мономолекулярного b-распада можно понизить, если уменьшить давление, при котором осущест­вляется крекинг. Технологически это легче всего достигается прове­дением крекинга в присутствии перегретого водяного пара., что позво­ляет снизить парциальное давление самих алканов. Энергия активации для b-распада значительно выше, чем для процессов обрыва и пере­носа цепи. Для того, чтобы b-распад стал доминирующим процессом разложения свободных радикалов, термический крекинг следует прово­дить при возможно более высокой температуре порядка 750-900 о С. Это способствует возрастанию доли этилена и пропилена в продуктах крекинга.

Выход этилена из циклоалканов гораздо ниже, чем из этана, про­пана и н -алканов. Это становится ясно из следующих реакций b-распада при термическом крекинге циклогексана как модельно­го соединения.

Разумеется, здесь были перечислены только основные типы реакций, протекающих при термическом крекинге. В результате вторичных про­цессов деструкции выход алкенов снижается, и в продуктах крекинга появляется ацетилен, диены и кокс. Для того, чтобы избежать вторичных реакций, крекинг проводят на глубину не более 50%, а непро­реагировавшие алканы повторно подвергают крекингу.

Получаемая на установках каталитического крекинга пропан-пропиленовая фракция частично используется в процессах алкилирования для получения алкилбензинов. Алкилирование изобутана пропиленом и получение диметилпентанов из пропилена проводят с целью повышения выработки алкилбензина как целевого продукта крекинга. При этом, качество алкилбензина, полученного с использованием пропан-пропиленовой фракции уступает по качеству алкилбензину, получаемому из бутиленового сырья.

Выход пропилена на установках каталитического крекинга зависит от следующих факторов:

Тип реактора
- тип сырья
- тип катализатора
- уровень загрузки мощностей
- объемы производства газойля
- объемы использования пропилена в других процессах производства топлива (алкилировании).

Наибольшие выходы пропилена дает новый вариант каталитического крекинга - глубокий каталитический крекинг (до 16%).

Дегидрирование пропана.

Процесс дегидрирования ранее осуществлялся преимущественно для получения изобутилена из изобутана. Дегидрирование пропана как промышленный способ получения пропилена используется с 1990 года. В процессе дегидрирования практически отсутствуют побочные продукты.

В соответствии с данной технологией пропан (и небольшое количество водорода для снижения коксообразования) подают в реактор с неподвижным либо движущимся слоем катализатора при температуре 510-700 ºС при атмосферном давлении. Катализатором служит платина, нанесенная на активированный оксид алюминия, содержащий 20% хрома. При любой конструкции реактора необходима постоянная регенерация катализатора для сохранения его активности.

Выходящий из реактора поток поступает в стандартные колонны для разделения. Непрореагировавший пропан и некоторое количество водорода возвращаются в процесс, смешиваясь со свежей порцией сырья. Оставшийся продукт содержит примерно 85% пропилена, 4% водорода, а также легкие и тяжелые отходящие газы.

Применение данной технологии оправдано при высоком спросе на пропилен, превышающем спрос на этилен. Отсутствие побочных продуктов избавляет от дополнительных усилий по их реализации. Одним из ключевых моментов для производства пропилена дегидрированием пропана является разница цен пропилена и пропана. Если разница будет недостаточной, то может оказаться, что производимый пропилен будет стоить дороже, чем по рыночным расценкам. Однако нельзя сказать, что процесс дегидрирования используется лишь при наличии источника достаточно дешевого пропана. Фактически, большинство заводов по дегидрированию пропана расположено в местах, где существует особая потребность в пропилене, а не там, где есть дешевый пропан. В то время как большая часть пропилена производится при переработке нефти и её продуктов, получение пропилена из пропана позволяет получать сырьё, которое не связано напрямую с ценами на нефть. Построение завода по дегидрированию требует относительно меньших затрат по сравнению с альтернативными вариантами, при равном количестве получаемого пропилена на выходе.

Метатезис олефинов.

Еще одним способом получения пропилена как целевого продукта является мететезис - химическая реакция, в которую вступают два вещества, при этом происходит замещение групп с образованием двух новых соединений. В данном случае этилен и смесь изомерных бутенов реагируют с образованием пропилена и бутена-1.

Согласно технологии, смесь изомерных бутенов и этилена подают в нижнюю часть реактора. В верхнюю часть реактора вводят катализатор метатезиса в виде суспензии и катализатор изомеризации бутена-1 в бутен-2. Поднимаясь вверх по реактору, этилен и бутен-2 взаимодействуют с образованием пропена. По мере расходования бутена-2 его количество постоянно пополняется за счет изомеризации бутена-1.

Поток, выходящий из реактора, подвергается фракционированию, при этом чистый пропилен отделяется от этилена и бутена. Последние возвращаются в процесс. Селективность образования пропилена выше 98%, нежелательных побочных продуктов практически нет.

В настоящее время пиролиз углеводородов является основным источником не только производства олефинов – этилена и пропилена, но и бутадиена, бутиленов, бензола, ксилолов, циклопентадиена, циклопентена, изопрена, стирола, нафталина, нефтеполимерных смол, сырья для производства технического углерода, растворителей, специальных масел.

В бензиновой фракции пиролиза присутствует до 30% (масс.) бензола, 6-7% толуола, 2-2,5 % ксилолов, около 1 % стирола. Фракция С5, содержит до 30% циклопентадиена, включая димеры, и около 10% изопрена. Тяжелая смола (температура кипения >200ºС) имеет в своем составе нафталин и его гомологи, а также небольшое количество тетралина и конденсированных ароматических углеводородов. Кроме того, смола пиролиза содержит некоторое количест во неароматических углеводородов, включая олефины и диены.

Получение ряда химических продуктов из смолы пиролиза успешно конкурирует с традиционными процессами их производства. Так, себестоимость бензола в 1,3 – 1,5 раза ниже, чем в каталитическом риформинге. За счет этого себестоимость этилена также снижается (на 20 – 30 %).

Основным сырьем процесса пиролиза являются этан, пропан, бутаны, содержащиеся в попутных и в нефтезаводских газах, газовые бензины и бензины прямой перегонки нефти, а также рафинат каталитического риформинга, остающийся после удаления ароматических углеводородов из катализата. В последнее время в связи с дефицитом и высокой стоимостью бензиновых фракций в качестве сырья пиролиза применяют также средние и тяжелые нефтяные фракции и даже сырую нефть.

Теоретические основы процесса пиролиза. Производство низших олефинов основано на термическом разложении углеводородного сырья с последующим низкотемпературным разделением полученных продуктов. Все реакции, протекающие при пиролизе, можно разделить на первичные и вторичные.

Основная первичная реакция – разложение исходного углеводорода с образованием водорода, низших алканов, этилена, пропилена и других олефинов. К вторичным – нежелательным реакциям относятся:

дальнейшее разложение образовавшихся олефинов;

гидрирование и дегидрирование олефинов с образованием парафинов, диенов, ацетилена и его производных;

конденсация отдельных молекул с образованием более высокомолекулярных углеводородов, а также более стабильных структур (ароматических углеводородов, циклодиенов и др.).

Все эти реакции при пиролизе протекают одновременно, поэтому особенно важным становится создание таких условий, при которых вторичные реакции были бы сведены к минимуму.

Ненасыщенные углеводороды только при достижении достаточно высокой температуры становятся термодинамически более стабильны, чем соответствующие им парафины. Для этилена, например, эта температура составляет 750ºС.

Сравним термодинамику возможных маршрутов образования олефинов. В первом случае при расщеплении (крекинге) молекулы исходного парафина:

Как известно, термодинамическая стабильность определяется температурой, при которой изменение энергии Гиббса

где ΔН - тепловой эффект реакции, Т - температура, ΔS - изменение энтропии,

становится равным нулю или отрицательным.

Обе реакции эндотермичны и протекают с увеличением объема. Чтобы сместить равновесие в сторону расщепления сырья и образования олефинов, необходимо увеличить температуру и снизить давление. Но если крекинг углеводородов происходит с заметной скоростью уже при температуре 500ºС, то вклад реакции дегидрирования в образование продуктов пиролиза становится ощутимым лишь начиная с 800-850ºС. По экономическим соображениям для достижения оптимального парциального давления углеводородов применяют не вакуум, а разбавление исходной смеси водяным паром. Последнее приводит к некоторым как положительным, так и отрицательным последствиям. Положительные связаны:

со снижением удельного количества тепла, необходимого для нагрева труб в реакторе за счет введения части энергии с водяным паром непосредственно в сырье;

улучшением испаряемости углеводородов;

(не играющим, однако, определяющей роли при температурах до 1000ºС);

со снижением коксоотложения за счет турбулизации потока углеводородов в реакционном змеевике;

с уменьшением вероятности протекания вторичных реакций, вследствие разбавления реакционной смеси.

К отрицательным последствиям относятся затраты энергии на нагрев до температуры реакции, рост инвестиций, связанных с необходимостью увеличения размеров печи и усложнения системы разделения продуктов пиролиза. Необходимое количество вводимого пара зависит в основном от молярной массы исходных углеводородов и лежит в интервале 0,25-1 тонн на тонну сырья соответственно для этана и тяжелых нефтяных фракций.

Итак, основная реакция пиролиза (особенно в случае использования в качестве сырья нефтяных фракций) крекинг углеводородной цепи с образованием олефина и парафина. Ее первичные продукты могут претерпевать дальнейшее расщепление (вторичный крекинг). В конечном итоге получается смесь легких углеводородов, богатая олефинами. Дегидрирование соответствующих олефинов приводит к образованию ацетилена и его производных, а также диеновых углеводородов, обладающих высокой реакционной способностью. Последние в условиях пиролиза вступают в реакции циклизации. При дегидрировании из циклоолефинов получаются арены, в частности бензол, являющиеся, в свою очередь, предшественниками образования полициклических углеводородов и кокса. Протеканию последних реакций (значит и отложению кокса) благоприятствует повышение температуры до 900-1000ºС.

Другой нежелательный процесс полимеризация ненасыщенных углеводородов. Она в условиях пиролиза практически не протекает. Эта реакция экзотермична и начинается лишь при понижении температуры. Быстрое преодоление температурной области, где она уже возможна, и скорость ее еще высока основная задача стадии охлаждения (закалки) газов пиролиза.

С увеличением времени пребывания сырья в зоне высоких температур увеличивается вклад нежелательных последовательных превращений целевых продуктов. Поэтому для повышения избирательности (селективности) пиролиза надо уменьшать время контакта. При этом, однако, снижается глубина переработки сырья за проход, а значит, и выход целевых продуктов.

Не только выход продуктов пиролиза, но их состав являются функцией многих параметров, в первую очередь природы сырья и условий осуществления процесса.

Термическое разложение углеводородного сырья происходит по радикальноцепному механизму. Начальное зарождение цепи происходит под влиянием температуры при гомолитическом разрыве наиболее слабой С-С связи с образованием свободных радикалов, которые способны образовывать новый свободный радикал, отрывая атом водорода от молекулы исходного углеводорода.

В общем случае образующиеся первичные радикалы с длинной цепью не устойчивы. Их стабилизация происходит в основном за счет расщепления связи С-С, находящейся в β-положении к радикальному центру, что отвечает общему принципу наименьшего изменения структуры:

Эта реакция β-распада повторяется до тех пор, пока не образуется сравнительно устойчивый радикал - метильный или этильный, который, в свою очередь, становиться источником зарождения новой цепи. Вероятность образования тех или иных радикалов на стадии продолжения цепи зависит от строения атакуемой молекулы углеводорода. Отрыв атома водорода от третичного атома углерода происходит легче, чем от вторичного и, тем более, первичного атома. В общем случае выход увеличивается с ростом содержания парафинов (нормального строения) в сырье, то есть зависит и от химического состава сырья. Термическая стабильность углеводородов возрастает в ряду парафины<нафтены<арены и уменьшается с ростом длины цепи.

Многообразие протекающих вторичных реакций затрудняет моделирование процесса, особенно при усложнении природы сырья и увеличении степени конверсии. До сих пор при проектировании печей опыт, эмпирические зависимости и экспериментальная проверка играют очень важную роль.

Рассмотрим механизм пиролиза парафинов вначале на примере этана. Инициирование цепи заключается в распаде молекулы С2Н6, по связи С-С на два метильных радикала:

Реакции (1) - (7) описывают образование основных продуктов распада этана на начальных стадиях пиролиза. Согласно имеющимся в литературе данным, основными продуктами пиролиза этана являются этилен и #Н, а радикал СНЗ образуется в очень малых количествах только на стадии инициирования.

В случае пиролиза пропана на стадии продолжения цепи большую роль играют как радикал #Н, так и метильный радикал СН3.

Инициирование:

Реинициирование, заключающееся в быстром распаде этильного радикала:

Продолжение цепи, в результате которого могут образоваться изо- или н-пропильный радикалы:

Приведенный механизм распада пропана соответствует составу продуктов только на начальных стадиях процесса.

Большое влияние на состав продуктов пиролиза оказывает температура. При низких температурах, соответствующих процессу крекинга, проявляется большая роль реакций (За) и (4а) по сравнению с (Зб) и (4б), так как энергия разрыва связи С-Н у первичного углеродного атома больше, чем у вторичного. Соответственно образуется больше пропилена по реакции (6) и меньше этилена по реакции (7). Кроме того, при пиролизе углеводородов С4 и выше этильный радикал образуется не только на стадии инициирования, но и на стадии продолжения цепи. В этом случае состав продуктов пиролиза в значительной степени зависит от соотношения скоростей реакций (2) и (5). При низких температурах большую роль играет реакция (5), энергия активации которой составляет около 45 кДж/моль, а роль реакции (2), имеющей энергию активации 168 кДж/моль, значительно меньше. В результате образуется больше этана и меньше этилена. При высоких температурах, напротив, образуется больше этилена, а пропилена и этана меньше. Это объясняется тем, что в соответствии с уравнением Аррениуса, с ростом температуры в большей степени ускоряются реакции, которые имеют более высокую энергию активации, а именно (2), (Зб) и (4б).

Существенное значение для процесса пиролиза имеет стадия обрыва цепи. Порядок реакции по исходному углеводороду зависит от того, которая из трех реакций обрыва цепи (8), (9) или (10) превалирует. Он может составлять 0,5, 1 или 1,5.

Причины торможения распада парафинов олефинами (пропиленом и изобутеном) объясняют двумя механизмами.

Для термического крекинга, где преобладает радикал *CH3 торможение объясняют, так называемым, аллильным механизмом.

Согласно ему радикал *СН3 отрывает атом водорода от пропилена или изобутилена с образованием малоактивного аллильного радикала:

Аллильный радикал не способен продолжать цепь распада, вследствие чего замена радикала *СН3 аллильным приводит к торможению распада парафина. При температурах пиролиза торможение является следствием присоединения водорода к олефину с образованием колебательновозбужденной частицы, которая распадается на этилен и метильный радикал (работы Р. А. Калиненко):

Торможение распада является следствием замены очень активного радикала Н> менее активным радикалом #СНЗ. Установлено также, что парафин ускоряет распад олефина за счет той же реакции (13).

В смесях парафинов с олефином наблюдается предел торможения, который соответствует содержанию 30 - 50% олефина в смеси. Это объясняется тем, что по мере увеличения количества олефина растет концентрация радикалов *СН3, которая компенсирует убыль радикалов Н>. Наиболее сильно торможение проявляется при пиролизе этана, так как цепь ведет радикал Н# (скорость реакции снижается в 7 - 10 раз). Для пропана скорости распада снижаются в 2 -2,5 раза, для н-бутана в 1,2 - 1,3 раза. Это объясняется тем, что при распаде этих углеводородов цепь ведут радикалы Н> и *СН3. Кроме того, все углеводороды, кроме этана, образуют пропилен. Торможение распада пропана и н-бутана является результатом взаимодействия пропилена, как с радикалом Н% так и с радикалом СН3* по реакции (11). Изотопным методом Р. А. Калиненко было установлено, что при высоких температурах (800 - 840ºС) в смесях н-бутана с пропиленом около 60 % пропилена реагирует по реакции (13) и 40 % - по реакции (11). По мере увеличения молярной массы парафина или олефина степень ингибирования снижается и практически перестает сказываться.

Выше были рассмотрены в основном реакции распада, наблюдаемые на начальных стадиях процесса, без учета вторичных реакций и реакций уплотнения, которые играют большую роль в процессе пиролиза. По мере углубления процесса в реакционной смеси появляется все больше продуктов уплотнения и кокса, мешающего нормальному осуществлению процесса. В реакциях уплотнения принимают участие олефины и ароматические углеводороды. В настоящее время отсутствует единая точка зрения на механизм образования высокомолекулярных углеводородов и кокса. Предполагается, в частности, что кокс образуется в результате реакций полимеризации, дегидроциклизации и деструктивной поликонденсации, которые, в конечном счете, ведут к образованию сложных полициклических структур, обедненных водородом:

Имеются и другие схемы образования кокса.

Тем не менее, считается что кокс, отлагающийся в реакторе пиролиза, может образовываться двумя путями:

а) гетерогенным разложением молекул углеводородов на стенке реактора или на частицах металла, извлеченных из металлической повер хности и остающихся на поверхности растущего слоя кокса;

б) при реакциях присоединения в объеме реактора, которым особенно благоприятствуют полициклические ароматические углеводороды, содержащиеся в сырье (например, газойлевой фракции).

В пользу представления о двух различных путях образования кокса при пиролизе углеводородов свидетельствует, в частности, разнообразие типов и структур кокса, формирующегося при термическом разложении жидких и газообразных углеводородов. При температурах промышленного пиролиза – от 650 до 900ºС – может формироваться кокс трех типов, нитевидный ленточный (дендрит) или игольчатый, слоистый анизотропный, образующий прочную пленку, и аморфный (“пушистый”), изотропный, образующий относительно непрочную пленку черного цвета.

Количественное соотношение двух путей образования кокса зависит от условий ведения процесса (структура и парциальное давление паров исходных углеводородов, температура реакции, состояние стенок реактора и др.). Кокс, образованный каталитическими реакциями (нитевидный), очевидно, преобладает при относительно низких температурах и на ранних стадиях процесса. При более высоких температурах и значительных степенях превращения исходного сырья, повидимому, возрастает значение конденсационного механизма (получается слоистый анизотропный и аморфный изотропный кокс), причем тип кокса зависит от парциального давления углеводородов, от свойств поверхности, на которой кокс отлагается, строения исходных углеводородов, температуры и ряда других факторов. С увеличением парциального давления углеводородов повышается доля образующегося аморфного кокса.