» » Что такое излучение в физике? Определение, особенности, применение излучения в физике. Что такое тепловое излучение в физике

Что такое излучение в физике? Определение, особенности, применение излучения в физике. Что такое тепловое излучение в физике

Сегодня поговорим о том, что такое излучение в физике. Расскажем о природе электронных переходов и приведем электромагнитную шкалу.

Божество и атом

Строение вещества стало предметом интереса ученых более двух тысяч лет назад. Древнегреческие философы задавались вопросами, чем воздух отличается от огня, а земля от воды, почему мрамор белый, а уголь черный. Они создавали сложные системы взаимозависимых компонентов, опровергали или поддерживали друг друга. А самые непонятные явления, например, удар молнии или восход солнца приписывали действию богов.

Однажды, долгие годы наблюдая за ступенями храма, один ученый заметил: каждая нога, встающая на камень, уносит крошечную частичку вещества. Со временем мрамор менял форму, прогибался посередине. Имя этого ученого - Левкипп, и он назвал мельчайшие частицы атомами, неделимыми. С этого начался путь к изучению того, что такое излучение в физике.

Пасха и свет

Затем настали темные времена, науку забросили. Всех, кто пытался изучать силы природы, окрестили ведьмами и колдунами. Но, как ни странно, именно религия дала толчок к дальнейшему развитию науки. Исследование о том, что такое излучение в физике, началось с астрономии.

Время празднования Пасхи вычислялось в те времена каждый раз по-разному. Сложная система взаимоотношений между днем весеннего равноденствия, 26-дневным лунным циклом и 7-дневной неделей не позволяла составлять таблицы дат для празднования Пасхи более чем на пару лет. Но церкви надо было все планировать заранее. Поэтому Папа Римский Лев X заказал составление более точных таблиц. Это потребовало тщательно наблюдения за движением Луны, звезд и Солнца. И в конце концов Николай Коперник понял: Земля не плоская и не центр вселенной. Планета - шар, который вращается вокруг Солнца. А Луна - сфера на орбите Земли. Конечно, можно спросить: «Какое отношение все это имеет к тому, что такое излучение в физике?» Сейчас раскроем.

Овал и луч

Позже Кеплер дополнил систему Коперника, установив, что планеты движутся по овальным орбитам, и движение это неравномерное. Но именно тот первый шаг привил человечеству интерес к астрономии. А там недалеко было и до вопросов: «Что такое звезда?», «Почему люди видят ее лучи?» и «Чем одно светило отличается от другого?». Но сначала придется перейти от огромных объектов к самым маленьким. И затем подойдем к излучению, понятию в физике.

Атом и изюм

В конце девятнадцатого века накопилось достаточно знаний о малейших химических единицах вещества - атомах. Было известно, что они электронейтральны, но содержат как положительно, так и отрицательно заряженные элементы.

Предположений выдвигалось множество: и что положительные заряды распределены в отрицательном поле, как изюм в булке, и что атом - это капля из разнородно заряженных жидких частей. Но все прояснил опыт Резерфорда. Он доказал, что в центре атома находится положительное тяжелое ядро, а вокруг него располагаются легкие отрицательные электроны. И конфигурация оболочек для каждого атома своя. Тут-то и кроются особенности излучения в физике электронных переходов.

Бор и орбита

Когда ученые выяснили, что легкие отрицательные части атома - это электроны, встал другой вопрос - почему они не падают на ядро. Ведь, согласно теории Максвелла, любой движущийся заряд излучает, следовательно, теряет энергию. Но атомы существовали столько же, сколько вселенная, и не собирались аннигилировать. На выручку пришел Бор. Он постулировал, что электроны находятся на некоторых стационарных орбитах вокруг атомного ядра, и находиться могут только на них. Переход электрона между орбитами осуществляется рывком с поглощением или испусканием энергии. Этой энергией может быть, например, квант света. По сути, мы сейчас изложили определение излучения в физике элементарных частиц.

Водород и фотография

Изначально технология фотографии была придумана как коммерческий проект. Люди хотели остаться в веках, но заказать портрет у художника было не каждому по карману. А фотографии были дешевыми и не требовали таких больших вложений. Потом искусство стекла и нитрата серебра поставило себе на службу военное дело. А затем и наука стала пользоваться преимуществами светочувствительных материалов.

В первую очередь фотографировать стали спектры. Уже давно было известно, что горячий водород испускает конкретные линии. Расстояние между ними подчинялось определенному закону. Но вот спектр гелия был более сложным: он содержал тот же набор линий, что и водород, и еще один. Вторая серия уже не подчинялась закону, выведенному для первой серии. Тут на помощь пришла теория Бора.

Выяснилось, что электрон в атоме водорода один, и он может переходить из всех высших возбужденных орбит на одну нижнюю. Это и была первая серия линий. Более тяжелые атомы устроены сложнее.

Линза, решетка, спектр

Таким образом было положено начало применению излучения в физике. Спектральный анализ - один из самых мощных и надежных способов определения состава, количества и структуры вещества.

  1. Электронный эмиссионный спектр расскажет, что содержится в объекте и каков процент того или иного компонента. Этот способ используют абсолютно все области науки: от биологии и медицины до квантовой физики.
  2. Спектр поглощения расскажет, какие ионы и на каких позициях присутствуют в решетке твердого тела.
  3. Вращательный спектр продемонстрирует, насколько далеко находятся молекулы внутри атома, сколько и каких связей присутствует у каждого элемента.

А уж диапазонов применения электромагнитного излучения и не счесть:

  • радиоволны исследуют структуру очень далеких объектов и недра планет;
  • тепловое излучение расскажет об энергии процессов;
  • видимый свет подскажет, в каких направлениях лежат самые яркие звезды;
  • ультрафиолетовые лучи дадут понять, что происходят высокоэнергетические взаимодействия;
  • рентгеновский спектр сам по себе позволяет людям изучать структуру вещества (в том числе и человеческого тела), а наличие этих лучей в космических объектах известят ученых, что в фокусе телескопа нейтронная звезда, вспышка сверхновой или черная дыра.

Абсолютно черное тело

Но есть особый раздел, который изучает, что такое тепловое излучение в физике. В отличие от атомного, тепловое испускание света имеет непрерывный спектр. И наилучшим модельным объектом для расчетов является абсолютно черное тело. Это такой объект, который «ловит» весь попадающий на него свет, но не выпускает обратно. Как ни странно, абсолютно черное тело излучает, и максимум длины волны будет зависеть от температуры модели. В классической физике тепловое излучение порождало парадокс Выходило, что любая нагретая вещь должна была излучать все больше и больше энергии, пока в ультрафиолетовом диапазоне ее энергия не разрушила бы вселенную.

Разрешить парадокс смог Макс Планк. В формулу излучения он ввел новую величину, квант. Не придавая ей особенного физического смысла, он открыл целый мир. Сейчас квантование величин - основа современной науки. Ученые поняли, что поля и явления состоят из неделимых элементов, квантов. Это привело к более глубоким исследованиям материи. Например, современный мир принадлежит полупроводникам. Раньше все было просто: металл проводит ток, остальные вещества - диэлектрики. А вещества типа кремния и германия (как раз полупроводники) ведут себя непонятно по отношению к электричеству. Чтобы научиться управлять их свойствами, потребовалось создать целую теорию и рассчитать все возможности p-n переходов.

Излучение - это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Существование различных энергетических состояний атома связано с тем, что его электроны могут располагаться на тех или иных энергетических уровнях. Когда электрон переходит с более высокого уровня на более низкий, то атом теряет энергию, которую он излучает в окружающее пространство в виде фотона - частицы-носителя электромагнитных волн. Наоборот, переход электрона с более низкого на более высокий уровень сопровождается поглощением фотона.

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон - это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Еще один пример излучения в быту - микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда - Солнце. Температура на поверхности Солнца около поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Излучение

Излучени е - перенос энергии путем испускания электромагнитных волн. Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас. Эти лучи называют тепловым излучением. Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются. Все окружающие нас предметы излучают тепло в той или иной мере.

В каком платье летом жарко

При повышении температуры тела тепловое излучение увеличивается, т.е. чем выше температура тела, тем интенсивнее тепловое излучение. Как фантастично выглядел бы окружающий мир, если бы мы могли видеть недоступные нашему глазу тепловые излучения других тел!

ЗНАЕШЬ ЛИ ТЫ? Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву.

Созданы материалы, с помощью которых можно превращать тепловое излучение в видимое. Их используют при изготовлении специальной фотопленки для съемки в абсолютной темноте и в приборах ночного видения - тепловизорах.

приборы ночного видения тепловизоры

1) Какой из видов теплопередачи сопровождается переносом вещества А) Теплопроводность Б) Конвекция В) Излучение Тест по теме: виды теплопередачи

2) При теплопередаче излучением А) Энергия переносится струями и потоками вещества Б) Энергия передается через слои неподвижного вещества В) Энергию можно передать в безвоздушном пространстве

3) Каким способом осуществляется передача энергии от Солнца к Земле А) Теплопроводность Б) Конвекция В) Излучение

4) После включения настольного светильник а с лампой книга лежащая на столе нагрелась. Выберите правильное утверждение А) Книга нагрелась вследствие конвекции в воздухе Б) Книга нагрелась вследствие излучения В) Книга нагревается тем сильнее, чем светлее обложка

5) Теплопередача излучением и конвекцией возможна через А) Атмосферный воздух Б) Пуховое одеяло В) Металлическую пластину

6) От чего зависит интенсивность конвекции А) От скорости движения молекул Б) От разницы температур В) От силы ветра

7) Благодаря какому способу теплопередачи можно греться около костра? А) Теплопроводности Б) Конвекции В) Излучению

8) Какой вид теплопередачи НЕ сопровождается переносом вещества? А) Конвекция и теплопроводность; Б) Излучение и конвекция; В) Теплопроводность и излучение

9) Как называется вид конвекции, при котором теплый воздух от батареи поднимается вверх А) Искусственная Б) Естественная В) Принудительная

10) Как называется вид конвекции, когда мы мешам ложкой горячий чай для охлаждения А) Искусственная Б) Естественная В) Принудительная

Каждый человек ежедневно сталкивается с различными видами излучения. Для тех, кто мало знаком с физическими явлениями, плохо представляет, что означает данный процесс и откуда он происходит.

Излучение в физике – это формирование нового электромагнитного поля, образующегося при реакции частиц, заряженных электрическим током, другими словами, это определенный поток электромагнитных волн, которые распространяются вокруг.

Свойства процесса излучения

Данную теорию заложил еще Фарадей М. в XIX веке, а продолжил и развил Максвелл Д. Именно он смог придать всем исследованиям строгую математическую формулу.

Максвелл смог вывести и структурировать законы Фарадея, из них он определил, что все электромагнитные волны перемещаются с одинаковой скоростью света. Благодаря его труду некоторые явления и действия в природе стали объяснимы. Вследствие его выводов стало возможным появление электро, радио техники.

Заряженные частицы определяют характерные особенности излучения. Также на процесс оказывает сильное влияние взаимодействие заряженных частиц с магнитными полями, к которым она стремится.

К примеру, при ее взаимодействии с атомными веществами меняется скорость движения частицы, она сначала замедляется, а далее перестает двигаться дальше, в науке данное явление называется тормозное излучение.

Можно встретить разные виды данного явления, одни созданы самой природой, а другие с помощью вмешательства человека.

Однако, сам закон изменения типа излечения один для всех. Электромагнитное поле отделено от заряженного элемента, но при этом движется с одинаковой быстротой.

Характеристика поля напрямую зависит от того, с какой скоростью происходит само движение, а также какой размер имеет заряженная частица. Если при движении она не сталкивается ни с чем, то ее скорость не изменяется и, следовательно, она не создает излучения.

А вот, если при движении она сталкивается с разными частицами, то скорость видоизменяется, часть собственного поля отсоединяется, и превращается в свободное. Получается, что формирование магнитных волн происходит только при изменении скорости частицы.

Различные факторы могут повлиять на скорость, отсюда и формируются разные типы излучения, к примеру, это может быть тормозное. Также существуют дипольное, мультипольное излучения, они образуются, когда частица внутри себя меняет, имеющуюся структуру.

Важно, что поле всегда имеет импульс, энергию.

Так как при взаимодействии позитрона и электрона возможно образование свободных полей, при этом заряженные частицы сохраняют импульс, энергию, что передается электромагнитному полю.

Источники и виды излучения


Электромагнитные волны изначально существовали в природе, в процессе развития и создания новых законов физики появились новые источники излучения, которые называются искусственными, созданные человеком. К такому виду можно отнести рентгеновские лучи.

Для того, чтобы ощутить на себе данный процесс не нужно выходить из квартиры. Электромагнитные волны окружают человека повсюду, достаточно включить свет или зажечь свечу. Поднеся руку к источнику света можно ощутить тепло, которое излучают предметы. Такое явление называется .

Однако, существуют и другие его виды, к примеру, в летние месяцы, отправляясь на пляж, человек получает ультрафиолетовое излучение, которое исходит от солнечных лучей.

Каждый год на диспансеризации проходят такую процедуру как флюорография, для того, что бы выполнить медицинское исследование используется специальное рентгеновское оборудование, которое тоже дает излучение.

В медицине также используется , чаще всего применяют при физиотерапии больных. Также такой вид используется в детских лазерах. Также при лечении некоторых заболеваний применяется лучевая терапия. Такой тип называется гаммой, так как длина волн весьма коротка.

Такое явление возможно благодаря полному совпадению заряженных частиц, которые взаимодействуют с источником света.

Многие слышали о радиации, это тоже один из видов излучения.

Она образуется при распаде химических элементов, которые являются радиоактивными, то есть процесс происходит из-за того, что расщепляется ядра частиц на атомы, и они излучают радиоактивные волны. Радио, телевидение для своего вещания используют радиоволны, излучаемые ими волны, обладают большой длиной.

Возникновение излучения


Диполь электрический является самым простым элементом, производящий явление. Однако при процессе создается определенная система, которая состоит из двух частиц, колеблющееся по-разному типу.

Если частицы по прямой, при движении на встречу друг другу, то происходит отсоединение части электромагнитного поля, и образуются заряженные волны.

В физике такое явление называется неизотопное, так как возникающая энергия не обладает одинаковой силой. В данном случае не важна скорость и расположение элементов, так как действительные излучатели должны иметь большое количество элементов, которые обладают зарядом.

Исходное состояние, возможно изменить, если одноименные зарядные частицы начать стягивать к ядру, где происходит распределение зарядов. Такое соединение можно рассматривать как электрический диполь, так как получившаяся система будет полностью электронейтрального типа.

Если отсутствует диполь, то возможно создать процесс с помощью квадруполя. Так же в физике выделяют более сложную систему для получения излучения – это мультиполь.

Для образования таких частиц необходимо использовать контур с током, тогда при движении возможно возникновение квадрупольного излучения. Важно учитывать, что интенсивность магнитного намного меньше, чем электрического типа.

Реакция излучения


В процессе взаимодействия частица теряет часть своей собственной энергии, так как при движении на нее влияет определенная сила. Она в свою очередь влияет на скорость потока волн, при ее действии действующая сила движения замедляется. Такой процесс называется радиационное трение.

При данной реакции сила процесса будет весьма незначительной, однако скорость будет весьма высока и приближена, к скорости света. Данное явление можно рассмотреть на примере нашей планеты.

В магнитном поле содержится довольно много энергии, поэтому электроны, которые излучаются из космоса, не могут долететь до поверхности планеты. Однако существуют частицы космических волн, которые могут дойти до земли. У таких элементов должна быть высокая потеря собственной энергии.

Также выделяются размеры области пространства, это значение является важным при излучении. Данный фактор влияет на формирование электромагнитного поля излучения.

В этом состоянии движения частицы не большие, но быстрота отсоединения поля от элемента, равна свету, и получается, что процесс создания будет весьма активен. И как следствие получаются короткие электромагнитные волны.

В том случае, когда скорость движения частицы высока, и приблизительно равна свету, то время отсоединения поля увеличивается, данный процесс длится довольно долго и, следовательно, электромагнитные волны обладают высокой длиной. Так как их путь занимал больше обычного, и образование поля происходило довольно продолжительное время.

В квантовой физике также используется излучение, но при рассмотрении используются совершено другие элементы, это могут быть молекулы, атомы. В данном случае, явление излучения рассматривается и подчиняется законам квантовой механики.

Благодаря развитию науки, получилось возможным вносить поправки и изменять характеристики излучения.

Многие исследования показали, что излучения могут негативно влиять на человеческий организм. Все зависит от того, какой вид излучения, и как долго человек ему подвергался.

Ни для кого не секрет, что при химической реакции и распаде ядерных молекул, может наступить лучевое излучение, которое является опасным для живых организмов.

При их распаде может происходить моментальное и довольно сильное облучение. Окружающие предметы также могут производить излучение, это могут быть сотовые телефоны, микроволновые печи, ноутбуки.

Данные предметы посылают, как правило, короткие электромагнитные волны. Однако в организме может происходить накопление, что влияет на здоровье.

Излучение, в самом общем виде, можно представить себе как возникновение и распространения волн, приводящее к возмущению поля. Распространение энергии выражается в виде электромагнитного, ионизирующего, гравитационного излучений и излучения по Хокингу. Электромагнитные волны – это возмущение электромагнитного поля. Они бывают радиоволновыми, инфракрасными (тепловое излучение), терагерцовыми, ультрафиолетовыми, рентгеновскими и видимыми (оптическими). Электромагнитная волна имеет свойство распространяться в любых средах. Характеристиками электромагнитного излучения являются частота, поляризация и длина. Наиболее профессионально и глубоко природу электромагнитного излучения изучает наука квантовая электродинамика. Она позволила подтвердить ряд теорий, которые широко используются в различных областях знаний. Особенности электромагнитных волн: взаимная перпендикулярность трех векторов - волнового, и напряженности электрического поля и магнитного поля; волны являются поперечными, а вектора напряженности в них совершают колебания перпендикулярно направлению ее распространения.

Тепловое же излучение возникает за счет внутренней энергии самого тела. Тепловое излучение - это излучение сплошного спектра, максимум которого соответствует температуре тела. Если излучение и вещество термодинамичны, излучение - равновесное. Это описывает закон Планка. Но на практике термодинамическое равновесие не соблюдается. Так более горячему телу свойственно остывать, а более холодному, напротив, нагреваться. Данное взаимодействие определено в законе Кирхгофа. Таким образом, тела обладают поглощающей способностью и отражающей способностью. Ионизирующее излучение - это микрочастицы и поля, имеющие способность ионизировать вещество. К нему относят: рентген и радиоактивное излучение с альфа, бета и гамма лучами. При этом ренгеновское излучение и гамма-лучи являются коротковолновыми. А бета и альфа частицы являются потоками частиц. Существуют природные и искусственные источники ионизации. В природе это: распад радионуклидов, лучи космоса, термоядерная реакция на Солнце. Искусственные это: излучение рентгеновского аппарата, ядерные реакторы и искусственные радионуклиды. В быту используются специальные датчики и дозиметры радиоактивного излучения. Всем известный Счетчик Гейгера способен идентифицировать корректно только гамма-лучи. В науке же используются сцинтилляторы, которые отлично разделяют лучи по энергиям.

Гравитационным считается излучение, в котором возмущение пространственно временного поля происходит со скоростью света. В общей теории относительности гравитационное излучение обусловлено уравнениями Эйнштейна. Что характерно, гравитация присуща любой материи, которая движется ускоренно. Но вот большую амплитуду гравитационной волне может придать только излучать большой массы. Обычно же гравитационные волны очень слабые. Прибор, способный их зарегистрировать, - это детектор. Излучение Хокинга же представляет собой скорее гипотетическую возможность испускать частицы черной дырой. Эти процессы изучает квантовая физика. Согласно данной теории черная дыра только поглощает материю до определенного момента. При учете квантовых моментов получается, что она способна излучать элементарные частицы.