» » Типологии биотехнологий, применяемые в россии. Биотехнология Современные биотехнологии для науки и практики

Типологии биотехнологий, применяемые в россии. Биотехнология Современные биотехнологии для науки и практики

Биотехнологией часто называют применение генной инженерии в XX-XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора и гибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах - химической и информационной технологиях и робототехнике.

История биотехнологии

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона. Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895). Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году.

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но и управлять их развитием, особенно у растений. Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Главная цель применения этих методов – более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека.
В 70-е годы появились и активно развивались такие важнейшие области биотехнологии, как генетическая (или генная) и клеточная инженерия, положившие начало «новой» биотехнологии, в отличие от «старой» биотехнологии, основанной на традиционных микробиологических процессах. Так, обычное производство спирта в процессе брожения – это “старая” биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта, – “новая” биотехнология.

Так, в 1814 году петербургский академик К. С. Кирхгоф (биография) открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения.

Первый антибиотик - пенициллин - удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных. Примерами применения генной инженерии в медицине являются также производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге. Физиологическая роль данного гормона состоит в регуляции продукции эритроцитов в зависимости от потребности организма в кислороде) в культуре клеток (т.е. вне организма человека) или новых пород экспериментальных мышей для научных исследований.

В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни. Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Клонирование – это один из методов, применяемых в биотехнологии для получения идентичных потомков при помощи бесполого размножения. Иначе клонирование можно определить как процесс изготовления генетически идентичных копий отдельной клетки или организма. То есть полученные в результате клонирования организмы похожи не только внешне, но и генетическая информация, заложенная в них, абсолютно одинакова.

Первым искусственно клонированным многоклеточным организмом стала в 1997 г. овца Долли. В 2007 году одного из создателей клонированной овцы Елизавета II наградила за это научное достижение рыцарским званием.

Достижения биотехнологии

Уже получены трансгенные мыши, кролики, свиньи, овцы, в геноме которых работают чужеродные гены различного происхождения, в том числе гены бактерий, дрожжей, млекопитающих, человека, а также трансгенные растения с генами других, неродственных видов. Например, в последние годы получено новое поколение трансгенных растений, для которых характерны такие ценные признаки, как устойчивость к гербицидам, к насекомым и др.

На сегодняшний день методы генной инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин, интерферон и соматотропин (гормон роста), которые необходимы для лечения ряда генетических болезней человека - сахарного диабета, некоторых видов злокачественных образований, карликовости,

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В 3 , В 13 , и др.), чем исходные формы.

Очень важное направление клеточной инженерии связано с ранними стадиями эмбриогенеза. Например, оплодотворение яйцеклеток в пробирке уже сейчас позволяет преодолевать некоторые распространенные формы бесплодия у человека.

Культуру растительных клеток выгодно использовать для быстрого размножения медленно растущих растений - женьшеня, маслинной пальмы, малины, персиков и др.

Уже многие годы для решения проблемы загрязнения окружающей среды используются биологические методы, разработанные биотехнологами. Так, бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти.

Доклад на тему “Биотехнология. История и достижения” обновлено: Июнь 9, 2019 автором: Научные Статьи.Ру

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное бюджетное государственное образовательное учреждение

высшего профессионального образования

«Государственный Университет Управления»

Институт Управления в промышленности, энергетике и строительстве

Кафедра Управления проектом

КУРСОВАЯ РАБОТА

по дисциплине: «Естественно-научные основы инновационных технологий»

на тему: «Биотехнология в медицине»

Введение

1. История возникновения и применения биотехнологий.

2. Биотехнология в основных направлениях медицины

3. Значение биотехнологий для медицины.

4. Генная инженерия. Теоретическое значение

5. Клеточная инженерия

6. Клонирование

7. Новые технологии в биофармацевтике

8. Некоторые этические и правовые аспекты применения биотехнологических методов

9. От «биотехнологии» к «биоэкономике»

Заключение

Список используемой литературы

В ведение

Биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология -- это получение продуктов из биологических объектов или с применением биологических объектов. В качестве биологических объектов могут быть использованы организмы животных и человека (например, получение иммуноглобулинов из сывороток, вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, а также животные и растительные клетки.

Еще в середине прошлого века стали внедряться новые подходы в биотехнологии, в связи с тем, что совершенствование методов микробиологии и химического мутагенеза дало возможность получать высокопродуктивные штаммы. Было обнаружено много полезных для человека микробиологических продуктов, и, прежде всего -- различные лекарственные соединения.

С 80-х гг. активно начались работы по секвенированию геномов, в середине 90-х гг. был разработан проект генома человека и животных. Возникла новая стадия развития биотехнологии -- суперсовременная биотехнология, ориентированная преимущественно на медицину: более 70% всех исследований и практических результатов связано с получением фармацевтических и биомедицинских препаратов.

Цель данной работы - рассмотреть основные направления и использование новых биологических технологий в медицине.

Секвенирование -- определение первичной структуры (последовательности) биополимера. Применительно к ДНК (или РНК), «отсеквенировать» означает «прочесть» молекулу.

1. История возникновения и применения биотехнологий

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона.

Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895). Термин "биотехнология" был введён в 1917 г. Венгерским инженером Карлом Эреки (1865-1933).

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но и управлять их развитием, особенно у растений. Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Главная цель применения этих методов - более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека.

В 70-е годы появились и активно развивались такие важнейшие области биотехнологии, как генетическая (или генная) и клеточная инженерия, положившие начало «новой» биотехнологии, в отличие от «старой» биотехнологии, основанной на традиционных микробиологических процессах. Так, обычное производство спирта в процессе брожения - это "старая" биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта, - "новая" биотехнология.

2. Биотехнология в основных направлениях медицины

Медицинские биотехнологии подразделяются на диагностические и лечебные.

Диагностические медицинские биотехнологии подразделяются на химические (определение диагностических веществ и параметров их обмена) и физические (определение физических полей организма).

Определение физических полей человеческого организма имеет большое диагностическое значение. Физическая диагностика дешевле и быстрее, чем химическая, поэтому ее роль в будущем будет возрастать.

Раньше диагностические химические биотехнологии сводились к определению в тканях и биологических жидкостях веществ, имеющих диагностическое значение. Назовем этот подход статическим. В настоящее время диагностика использует определение скоростей образования и распада, представляющих интерес веществ, а также определение активности ферментов, осуществляющих соответственно синтез и деградацию этих веществ. Назовем этот подход динамическим. И, наконец диагностика стала оценивать влияние на метаболизм диагностических веществ определенных функциональных воздействий. Такой подход можно назвать функциональным. Он позволяет выявить резервные возможности организма.

Наиболее актуальными проблемами современной медицины являются борьба с сердечно-сосудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями, старением и с вирусными инфекциями (в том числе со СПИДом).

По мнению ряда специалистов, решение проблемы онкологических заболеваний будет достигнуто с помощью иммунологических методов, позволяющих избирательно уничтожать опухолевые клетки. Решение проблемы рака должно повысить среднюю продолжительность жизни.

Решение проблем аллергических заболеваний определяется развитием иммунологии и прогрессом в изучении такой фундаментальной проблемы медицины, как воспаление. Химиотерапия и антибиотики, позволяющие эффективно бороться с бактериальной инфекцией, не эффективны в отношении вирусов. Предполагается, что существенный прогресс в деле борьбы с вирусными инфекциями будет, достигнут за счет развития молекулярной биологии вирусов, в частности изучения взаимодействия вирусов со специфическими для них клеточными рецепторами.

Расшифровка генома человека и успехи в клонировании животных открывают ошеломляющие перспективы в медицине. Использование метода клонирования человека может привести к созданию банка "запасных частей" для конкретных людей и обеспечить весьма значительное продление их жизни. Однако против этого выдвигаются возражения морального порядка. Представляется, что дилемма будет разрешена с созданием технологий клонирования тканей и органов.

Еще одну революцию в медицине вызывает изучение так называемых стволовых клеток, т.е. клеток, которые являются предшественниками других типов клеток, включая нервные.

Стволовые клетки могут давать начало любым клеткам организма - и кожным, и нервным, и клеткам крови. Стволовые клетки способны превращаться в клетки всех типов тканей: клетки крови, внутренних органов, мышечных и костных тканей, кожного покрова, нейроны и др. Также они принимают непосредственное участие в регенеративных процессах организма и могут замедлять процесс старения. Использование стволовых клеток - это в перспективе решение проблемы регенерации, т.е. радикального лечения инсульта, инфаркта, восстановления утраченных конечностей и т.п., а также весьма существенное продление жизни.

Представляется, что сейчас лидерами медицинской науки являются медицинская генетика и иммунология. Медицинская генетика может не только предотвращать появление на свет генетически неполноценных детей путем генетического консультирования их родителей и диагностировать генетические заболевания. Ее перспектива-это пересадка генов и управление их активностью. Иммунология позволяет создавать новые подходы к лечению иммунологических заболеваний (в том числе иммунодефицитов, аутоиммунных заболеваний и аллергии), инфекционных и онкологических заболеваний.

3. Знач ение биотехнологий для медицины

Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных. Примерами применения генной инженерии в медицине являются также производство человеческого инсулина, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге. Разработка методов генной инженерии привела к тому "биотехнологическому буму", свидетелями которого мы являемся. Благодаря достижениям науки в этой области стало возможным не только создание «биологических реакторов», трансгенных животных, генно-модифицированных растений, но и проведение генетической паспортизации (полного исследования и анализа генотипа человека, проводимого, как правило, сразу после рождения, для определения предрасположенности к различным заболеваниям, возможную неадекватную (аллергическую) реакцию на те или иные лекарства, а также склонность к определенным видам деятельности). Генетическая паспортизация позволяет прогнозировать и уменьшать риски сердечно-сосудистых и онкологических заболеваний, исследовать и предотвращать нейродегенеративные заболевания и процессы старения, анализировать нейро-физиологические особенности личности на молекулярном уровне), диагностирование генетических заболеваний, создание ДНК-вакцин, генотерапия различных заболеваний и т.д.

Наукой была доказана значительная роль наследственной предрасположенности в возникновении таких широко распространённых болезней, как ишемическая болезнь сердца, гипертония, язвенная болезнь желудка и двенадцатиперстной кишки, псориаз, бронхиальная астма и др. Стало очевидным, что для эффективного лечения и профилактики этих болезней, встречающихся в практике врачей всех специальностей, необходимо знать механизмы взаимодействия средовых и наследственных факторов в их возникновении и развитии, а, следовательно, дальнейший прогресс в здравоохранении невозможен без развития биотехнологических методов в медицине. В последние годы именно эти направления считаются приоритетными и бурно развиваются.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Важнейшим направлением медицинской генетики в настоящее время является разработка новых методов диагностики наследственных заболеваний, в том числе и болезней с наследственной предрасположенностью. Сегодня уже никого не удивляет пред имплантационная диагностика - метод диагностики эмбриона на ранней стадии внутриутробного развития, когда врач-генетик, извлекая лишь одну клетку будущего ребенка с минимальной угрозой для его жизни, ставит точный диагноз или предупреждает о наследственной предрасположенности к той или иной болезни.

Как теоретическая и клиническая дисциплина медицинская генетика продолжает интенсивно развиваться в разных направлениях: изучение генома человека, цитогенетика, молекулярная и биохимическая генетика, иммуногенетика, генетика развития, популяционная генетика, клиническая генетика.

Благодаря все более широкому применению биотехнологических методов в фармацевтике и медицине появилось новое понятие «персонализированной медицины», когда лечение пациента осуществляется на основе его индивидуальных, в том числе генетических особенностей, и даже препараты, используемые в процессе лечения, изготавливаются индивидуально для каждого конкретного пациента с учетом его состояния. Появление таких препаратов стало возможным, в частности, благодаря применению такого биотехнологического метода, как гибридизация (искусственное слияние) клеток. Процессы гибридизации клеток и получения гибридов еще до конца не изучены и не отработаны, но важно, что с их помощью стало возможным нарабатывать моноклональные антитела. В настоящее время они применяются также в качестве высокоэффективных препаратов для индивидуального лечения пациентов, страдающих такими тяжелыми заболеваниями, как рак, СПИД и др.

4. Генная инженерия. Теоретическое значение

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. Генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных.

Значительный прогресс, достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека

В настоящее время фармацевтическая промышленность завоевала лидирующие позиции в мире, что нашло отражение не только в объёмах промышленного производства, но и в финансовых средствах, вкладываемых в эту промышленность (по оценкам экономистов, она вошла в лидирующую группу по объёму купли-продажи акций на рынках ценных бумаг).

На данный момент учёные занимаются поиском генов, кодирующих новые полезные признаки. Группа ученых, таких как Марк Адам (ведущий сотрудник института геномных исследований в штате Мэриленд-США, частной исследовательской компании, занимающейся исключительной работой в области картирования генов), Крэйк Вентер (директор этого института) и соавторами, разрабатывается проект“Геном человека”. Цель этого проекта заключается в выяснении последовательности оснований во всех молекулах ДНК в клетках человека. Одновременно должна быть установлена локализация всех генов, что помогло бы выяснить причину многих наследственных заболеваний и этим открыть пути к их лечению.

А) Генетическое тестирование.

Генетическое тестирование включает в себя непосредственно изучение ДНК молекулы. И для определения мутировавшей последовательности ученые сканируют ДНК пациента.

Существует два типа генетического тестирования. В первом, исследователь может определять короткие отрезки ДНК, чьи последовательности дополняют мутировавшие. Во втором, проводить путем генной терапии сравнение последовательности ДНК в геноме пациента со здоровым образцом.

Генетическое тестирование в настоящее время может обнаружить мутации, связанные с редкими генетическими нарушениями, такими как кистозный фиброз или серповидно-клеточная анемия. Однако генетические тесты не могут обнаруживать каждую мутацию, связанную с определенным условием, поскольку многие из них еще не открыты.

Б) Генная терапия.

Генная терапия может быть использована для лечения генетических и приобретенных заболеваний, таких как рак и СПИД, с помощью нормальных генов в дополнение или на замену дефектных генов, или укрепления нормальных функций организма, например, иммунитета. Существует два основных способа лечения генной терапией:

1.""EX VIVO"", то есть "вне тела" - в лаборатории выращиваются клетки, выделенные из крови или костного мозга пациента. Затем они подвергаются воздействию вируса, несущего желаемый ген. Вирус попадает в клетки и ген становится частью их ДНК. Прежде чем вернуться к пациенту путем инъекции в вену, клетки могут еще расти в лаборатории.

2.""IN VIVO"", "внутри тела" - клетки не выделяют из тела пациента, вместо этого используют векторы для доставки желаемого гена.

биотехнология генная инженерия клонирование

5. Клеточная инженерия

Клеточная инженерия - метод конструирования клеток нового типа на основе их культивирования, гибридизации и реконструкции. При гибридизации искусственно объединяют целые клетки с образованием гибридного генома. Клеточная реконструкция связана с созданием жизнеспособной клетки из отдельных фрагментов разных клеток (ядра, цитоплазмы, хромосом и др.). Клеточная инженерия используется для решения теоретических проблем в биотехнологии, для создания новых форм растений, обладающих полезными признаками и одновременно устойчивых к болезням и т. п.

Приведу несколько наглядных примеров использования методов клеточной инженерии:

Возможно слияние эмбрионов на ранних стадиях, создание химерных животных. Таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.

6. Клонирование

Клонирование - “получение идентичных потомков при помощи бесполого размножения” По-другому определение клонирования звучит так “Клонирование - это процесс изготовления генетически идентичных копий отдельной клетки или организма”. То есть эти организмы похожи не только внешне, но и генетический код, заложенный в них, одинаков.

Одной из главных задач в данной области является создание коров, в молоке которых будет содержаться сыворотка человеческого алгаомина. Эта сыворотка используется для лечения ожогов и иных травм, и мировая потребность в ней составляет от 500 до 600 тон в год. Это одно направление. Второе-создание органов животных, которые можно будет использовать для трансплантации человеку. “Во всех странах существует серьезный недостаток донорских органов почек, сердец, поджелудочных желез, печени. Поэтому идея, что можно создать практически конвейерное производство транс генетических свиней, по графику поставляющих такие органы для пациентов, специально подготовленных для приема этих органов, вместо того, чтобы отчаянно пытаться найти подходящую ткань у донора-человека - такая идея является волнующей перспективой”.

Первым, кто доказал возможность искусственного получения близнецов, был немецкий эмбриолог Дриш. Разделив клетки двуклеточного зародыша морского ежа, он получил два генетически идентичных организма.

Первые успешные опыты по трансплантации ядер клеток тела в яйцеклетку осуществили в 1952 году Бриге и Кинг, проводившие опыты с амебами. А в 1979 году англичанин Виладсен разработал метод получения однояйцевых близнецов из эмбрионов овцы и коровы. Однако развития эмбрионов добиться не удалось” А в 1976 году Дж. Гердон доказал возможность клонирования на лягушках. Однако лишь в 1983 году учёным удалось получить серийные клоны взрослых амфибий. В США (1952) У. Р. Бриггс и Т. Дж. Кинг, в Англии Д. Б. Гордон (1960) получили генетические копии лягушки, а в 1997 году шотландец И. Уилмут получает хирургическим путём знаменитую овцу Долли - генетическую копию матери. Для этого из клеток её вымени было взято ядро для пересадки в яйцеклетку другой овцы. Успеху способствовало то, что взамен инъецирования нового ядра применялись воздействия, приводящие к слиянию лишённой ядра яйцеклетки с обычной неполовой клеткой. После этого яйцеклетка с заменённым ядром развивалась как оплодотворённая. Очень важно, что этот метод позволяет взять ядро клонируемой особи в зрелом возрасте, когда уже известны её важные для человека хозяйственные признаки. Профессор Нейфах и его коллеги из Института биологии развития Российской медицины недавно скопировали каспийского осетра. Основной аргумент российских биологов - они пытаются спасти каспийского осетра как вид. По размерам искусственные осетры, правда, пока не дотягивают до нормы, но, как утверждают исследователи, это уже технические трудности.

А ученые из университета штата Висконсин опробовали новую методику клонирования млекопитающих, отличную от той, что применялась учеными из Рослингского института, вырастившими Долли. В качестве основного исходного материала новаторы использовали яйцеклетку коровы. Ее лишали так называемого генетического кода и имплантировали молекулы ДНК других клонируемых животных свиньи, крысы, овцы или обезьяны. При этом источником наследственного материала служили клетки тканей взрослых особей, взятые, например, из свиного или крысиного уха. После искусственного оплодотворения из коровьей яйцеклетки, получившей новую генетическую информацию, развивался зародыш другого млекопитающего - копия генетического донора. Таким образом, ученым удалось благополучно вырастить в лабораторных условиях эмбрионы свиньи, крысы, овцы, обезьяны да и самой коровы.

Специалисты из Висконсинского университета уверены, что их исследования имеют важное значение для развития генной инженерии и изучения возможностей генетического донорства. Руководители этих работ Нил Ферст, одним из первых в США приступивший к опытам по клонированию коров, и Таня Доминко полагают, что использованная ими методика в будущем сможет помочь сохранению исчезающих и редких видов животных.

Сейчас перед людьми не стоит вопроса: “Клонировать или нет? ” Конечно, клонировать. Благодаря этому открываются новые возможности. Например, в сельском хозяйстве можно получить высоко продуктивных животных или животных с человеческими генами. А также клонирование органов и тканей-задача номер один в траспланталогии. Стоит другой вопрос: “Разрешить ли клонирование человека? ” С одной стороны это возможность бездетных людей иметь своих собственных детей, а с другой-возможность получения новых Наполеонов и Гитлеров, а также получение клонов для последующего использования их в качестве доноров необходимых органов.

Трансплантация клонируемых органов способна спасти миллионы людей, умирающих по всему свету из-за дефицита органов, который создается, кстати, из-за всевозможных ограничений, навязанных "моралистами": целостность трупа и его неприкосновенность после смерти. Вторым важным следствием трансплантации клонируемых частей тела может стать пересадка утраченных органов: рук, ног, глаз и т. д. Лишить людей надежды забыть про инвалидность и стать нормальными людьми - разве это не в высшей степени негуманно?

7. Новые технологии в биофармацевтике

Сегодня человечество совершенно справедливо полагает, что биотехнологические науки занимают приоритет в области современных высоких технологий. Секвенирование геномов и валидация новых мишеней для действия лекарственных соединений является одним из перспективных направлений современной фармакологии. Учитывая, что появились новые принципиальные возможности для секвенирования, встает вопрос о генетической паспортизации населения, когда каждому будет выдан его генетический паспорт, и человек будет решать проблемы своего здоровья. Важнейшим достижением прошлого века являются стволовые клетки, что стало возможным благодаря развитию всей эмбриологии и цитологии. Это позволило подойти к разработке путей создания искусственных органов, получать новые вещества, специфически влияющие на органы-мишени.

На современном этапе развития биотехнологии большое внимание уделяется разработке подходов к созданию новых процессов в медицинской биотехнологии. Это различные методы модификации микроорганизмов, растений и животных, в т.ч. культивирование растительных клеток как источника получения новых веществ; конструирование молекул, нанотехнологии, компьютерное моделирование, биокаталитическая трансформация веществ и т.д.

8. Некоторые этические и правовые аспекты применения биотехнологий

Этика - учение о нравственности, согласно которому главной добродетелью считается умение найти середину между двух крайностей. Данная наука основана Аристотелем.

Биоэтика - часть этики, изучающая нравственную сторону деятельности человека в медицине, биологии. Термин предложен В.Р. Поттером в 1969 г.

В узком смысле биоэтика обозначает круг этических проблем в сфере медицины. В широком смысле биоэтика относится к исследованию социальных, экологических, медицинских и социально-правовых проблем, касающихся не только человека, но и любых живых организмов, включенных в экосистемы. То есть она имеет философскую направленность, оценивает результаты развития новых технологий и идей в медицине, биотехнологии и биологии в целом.

Современные биотехнологические методы обладают настолько мощным и не до конца изученным потенциалом, что их широкое применение возможно только при строгом соблюдении этических норм. Существующие в обществе моральные принципы обязывают искать компромисс между интересами общества и индивида. Более того, интересы личности ставятся в настоящее время выше интересов общества. Поэтому соблюдение и дальнейшее развитие этических норм в этой сфере должно быть направлено, прежде всего, на всемерную защиту интересов человека.

Массовое внедрение в медицинскую практику и коммерциализация принципиально новых технологий в области генной инженерии и клонирования, привело также к необходимости создания соответствующей правовой базы, регулирующей все юридические аспекты деятельности в этих направлениях.

Новейшие биотехнологии создают огромные возможности вмешательства в жизнедеятельность живых организмов и неизбежно ставят человека перед нравственным вопросом: до какого предела допустимо вторжение в природные процессы? Любая дискуссия по биотехнологической проблематике не ограничивается научной стороной дела. В ходе этих дискуссий нередко высказываются диаметрально противоположные точки зрения по поводу применения и дальнейшего развития конкретных биотехнологических методов, прежде всего таких, как:

Генная инженерия,

Пересадка органов и клеток в терапевтических целях;

Клонирование - искусственное создание живого организма;

Использование препаратов, влияющих на физиологию нервной системы, для модификации поведения, эмоционального восприятия мира и т.д.

Практика, существующая в современных демократических обществах, показывает, что эти дискуссии абсолютно необходимы не только для более полного понимания всех «плюсов» и «минусов» применения методов, вторгающихся в личную жизнь человека уже на уровне генетики. Они позволяют также обсудить морально-этические аспекты и определить отдаленные последствия применения биотехнологий, что в свою очередь, помогает законодателям создавать адекватную правовую базу, регулирующую данную сферу деятельности в интересах защиты прав личности.

Остановимся на тех направлениях в биотехнологических исследованиях, которые напрямую связаны с высоким риском нарушения прав личности и вызывают наиболее острую дискуссию по поводу их широкого применения: пересадка органов и клеток в терапевтических целях и клонирование.

В последние годы резко возрос интерес к изучению и применению в биомедицине эмбриональных стволовых клеток человека и техники клонирования с целью их получения. Как известно, эмбриональные стволовые клетки способны трансформироваться в разные типы клеток и тканей (кроветворные, половые, мышечные, нервные и др.). Они оказались перспективными для применения в генной терапии, трансплантологии, гематологии, ветеринарии, фармакотоксикологии, при тестировании лекарств и пр.

В ряде стран запрещены любые исследования на эмбрионах (например, в Австрии, Германии). Во Франции права эмбриона защищаются с момента его зачатия. В Великобритании, Канаде и Австралии, хотя создание эмбрионов для исследовательских целей не запрещено, но разработана система законодательных актов, регулирующая и контролирующая подобные исследования. В России ситуация в этой области более чем неопределенная: деятельность по изучению и использованию стволовых клеток недостаточно отрегулирована, остаются существенные пробелы в законодательстве, мешающие развитию этого направления. В отношении же клонирования в 2002 г. федеральным законом был введен временный (на 5 лет) запрет на клонирование человека, но срок его действия истек в 2007 г., и вопрос остается открытым.

Ученые стараются четко разграничивать "репродуктивное" клонирование, цель которого - создание клона, то есть целого живого организма, идентичного другому организму по генотипу, и "терапевтическое" клонирование, применяемое для выращивания колонии стволовых клеток.

В случае стволовых клеток проблемы статуса эмбриона и клонирования приобретают новое измерение. Это связано с мотивацией данного рода научных исследований, а именно применение их для поиска новых, более эффективных способов лечения тяжелых и даже неизлечимых заболеваний. Поэтому в некоторых странах (таких как США, Канада, Англия), где до последнего времени считалось недопустимым использовать эмбрионы и технологии клонирования в терапевтических целях, происходит изменение позиции общества и государства в сторону допустимости их применения в целях лечения таких заболеваний, как рассеянного склероза, болезней Альцгеймера и Паркинсона, постмиокардиального инфаркта, недостаточности регенерации костной или хрящевой ткани, при черепно-лицевых травмах, диабете, миодистрофии и др.

В то же время терапевтическое клонирование многими рассматривается как первый шаг к репродуктивному клонированию, которое встречает крайне негативное отношение во всем мире, и на него повсеместно наложен запрет.

Клонирование человека в настоящее время официально нигде не осуществляется. Опасность в его применении в репродуктивных целях видят в том, что техника клонирования исключает естественное и свободное слияние генетического материала отца и матери, что воспринимается как вызов достоинству человека. Нередко говорится о проблемах самоидентификации клона: кого он должен считать родителями, почему он является генетической копией кого-то другого? Кроме того, клонирование сталкивается с некоторыми техническими препятствиями, которые подвергают опасности здоровье и благополучие клона. Есть факты, свидетельствующие о быстром старении клонов, возникновении у них многочисленных мутаций. В соответствии с техникой клонирования, клон вырастает из взрослой - не половой, а соматической клетки, в генетической структуре которой на протяжении многих лет происходили так называемые соматические мутации. Если при естественном оплодотворении мутировавшие гены одного родителя компенсируются нормальными аналогами другого родителя, то при клонировании такой компенсации не происходит, что значительно увеличивает для клона риск заболеваний, вызываемых соматическими мутациями, и многих тяжелых заболеваний (рака, артрита, иммунодефицитов). Помимо прочего, у некоторых людей возникает страх перед клонированным человеком, перед его возможным превосходством в физическом, моральном и духовном развитии (российский врач-психиатр В. Яровой считает, что этот страх носит характер психического расстройства (фобии) и даже присвоил ему в 2008 г. название «бионализм»).

Здесь были обсуждены только некоторые из многочисленных проблем, которые возникают в связи с бурным развитием биотехнологий и вторжением их в жизнь человека. Безусловно, прогресс науки остановить нельзя и вопросы, которые она ставит, возникают быстрее, чем общество может на них найти ответы. Справиться с этим положением дел можно лишь понимая, насколько важно широко обсуждать в обществе этические и правовые проблемы, которые появляются по мере развития и внедрения в практику биотехнологий.

9. От «биотехнологии» к «биоэкономике»

Исходя из вышесказанного, можно сделать вывод о том, что передовые биотехнологии способны играть существенную роль в улучшении качества жизни и здоровья человека, обеспечении экономического и социального роста государств (особенно в развивающихся странах).

С помощью биотехнологии могут быть получены новые диагностические средства, вакцины и лекарственные препараты. Биотехнология может помочь в увеличении урожайности основных злаковых культур, что особенно актуально в связи с ростом численности населения Земли. Во многих странах, где большие объёмы биомассы не используются или используются не полностью, биотехнология могла бы предложить способы их превращения в ценные продукты, а также переработки с использованием биотехнологических методов для производства различных видов биотоплива. Кроме того, при правильном планировании и управлении биотехнология может найти применение в небольших регионах как инструмент индустриализации сельской местности для создания небольших производств, что обеспечит более активное освоение пустующих территорий и будет решать проблему занятости населения.

Особенностью развития биотехнологии в XXI веке является не только ее бурный рост как прикладной науки, она все более широко входит в повседневную жизнь человека, и что еще более существенно - обеспечивая исключительные возможности для эффективного (интенсивного, а не экстенсивного) развития практически всех отраслей экономики, становится необходимым условием устойчивого развития общества, и тем самым оказывает трансформирующее влияние на парадигму развития социума в целом.

Широкое проникновение биотехнологий в экономику мирового хозяйства нашло свое отражение и в том, что сформировались даже новые термины для обозначения глобальности данного процесса. Так, применение биотехнологических методов в промышленном производстве, стали называть «белая биотехнология», в фармацевтическом производстве и медицине - «красная биотехнология», в сельскохозяйственном производстве и животноводстве - «зеленая биотехнология», а для искусственного выращивания и дальнейшей переработки водных организмов (аквакультура или марикультура) - «синяя биотехнология». А экономика, интегрирующая все эти инновационные области, получила название «биоэкономика». Задача перехода от традиционной экономики к экономике нового типа - биоэкономике, основанной на инновациях и широко использующей возможности биотехнологии в различных отраслях производства, а также в повседневной жизни человека, уже объявлена стратегической целью во многих странах мира.

Заключение

В медицине биотехнологические приемы и методы играют ведущую роль при создании новых биологически активных веществ и лекарственных препаратов, предназначенных для ранней диагностики и лечения различных заболеваний. Дальнейший прогресс человечества во многом связан с развитием биотехнологии. То, что казалось в медицинской практике фантастическим вчера, уже сегодня постепенно внедряется в реальную жизнь. В целом, биотехнология представляет собой систему приемов, позволяющих получать промышленным способом ценные продукты за счет использования процессов жизнедеятельности живых организмов.

В фармацевтической промышленности биотехнологии применяются для производства антибиотиков, иммунобиологических препаратов, генно-инженерных лечебно-профилактических препаратов, для производства энзимов, биологически активных веществ и других медицинских препаратов. Важным направлением биотехнологий в медицине является использование биотехнологий для реконструкции тканей и органов человека с использованием стволовых клеток.

Одним из перспективных направлений является использование нанотехнологий в медицинских целях, создание новых носителей и средств целевой доставки лекарственных препаратов.

Новые биологические технологии используются в диагностике и лечении сердечно-сосудистых, онкологических, аллергических и эндокринных заболеваниях.

Объективно можно констатировать, что инновации генных, информационных и иных технологий потенциально обладают уникальной возможностью победоносно воздействовать на многие болезни современности, целенаправленно вносить требуемые коррективы в геном человека, значительно увеличивать продолжительность жизни, восстанавливать или заменять стареющие органы на новые в рамках регенеративной медицины, вести беременность вне стенок утробы матери, дистанционно консультировать, обследовать, оперировать пациентов и наблюдать за состоянием их здоровья в режиме онлайн и многое другое, что сложно было прогнозировать буквально ещё несколько десятилетий назад.

Список используемой литературы

1. Биологический энциклопедический словарь

2. “Биология для студента” Справочник

3. «Биотехнология: Проблемы и перспективы», Н. С. Егоров, А. В. Олескин

4. Большой энциклопедический словарь

5. Научная работа «Биотехнологии» к.б.н Татьяны Гаевой, члена Общества биотехнологов России им. Ю.А. Овчинникова, 2011 год

6. Научно-популярный журнал www.SCNC.ru

7. Национальный научный портал (ННП) Республики Казахстан www.nauka.kz

8. «Основы биотехнологии» - Учебное пособие для студентов биологического факультета, Кузьмина Н.А. www. biotechnology.ru, 2010 год

9. “Энциклопедический словарь юного биолога”, М. Е. Аспиз, 1986 год

Размещено на Allbest.ru

Подобные документы

    Понятие и экономический смысл биотехнологий: цели, задачи, результат. Этапы создания малотоннажного биотехнологического производства, опыт его становления в Беларуси. Перспективность инновационных биотехнологий для пищевой промышленности, фармацевтики.

    статья , добавлен 19.12.2014

    Понятие биотехнологии, история её развития, анализ современного состояния отрасли, перспективы её развития. Характеристика текущего состояния биотехнологий в США, Европе, Китае, Индии, России. Стадии биотехнологического производства и его виды.

    курсовая работа , добавлен 06.11.2012

    История развития технологий с использованием биообъектов (биотехнологий). Использование достижений различных областей науки, создание широкого ассортимента коммерческих продуктов и методов. Деление истории биотехнологии на периоды, ее цели и задачи.

    реферат , добавлен 23.10.2016

    История развития нанотехнологий; их значение в медицине, науке, экономике, информационном окружении. Схематическое изображение и направления применения однослойной углеродной нанотрубки. Создание нанотехнологических центров в Российской Федерации.

    презентация , добавлен 23.09.2013

    Понятие и история открытия графена, его характерные свойства и признаки, способы получения. Перспективы развития и применения: техника и электроника, опреснение соленой воды, аккумуляторы. Особенности и направления использования материала в медицине.

    реферат , добавлен 08.06.2016

    Понятие нанотехнологий и области их применения: микроэлектроника, энергетика, строительство, химическая промышленность, научные исследования. Особенности использования нанотехнологий в медицине, парфюмерно-косметической и пищевой промышленностях.

    презентация , добавлен 27.02.2012

    Ознакомление с историей открытия коэнзима Q10. Биохимические функции кофермента. Изучение особенностей современного рынка CoQ10, применения в медицине. Рассмотрение синтетического, полусинтетического и ферментативного способов промышленного производства.

    реферат , добавлен 10.12.2015

    Характеристика особенностей применения лазера в медицине. Лазерные радары. Различные проблемы, возникающие при использовании лазеров для измерений расстояний. Поверхностная лазерная обработка. Лазерное оружие. Лазеры в связи и информационных технологиях.

    реферат , добавлен 12.05.2013

    Влияние техники на человека и общество в современном мире: возникновение информационной цивилизации. Стирание границы между человеком и машиной, между телом и технологией, развитие биотехнологий и нанотехнологий. Конструирование и модификация человека.

    эссе , добавлен 29.05.2016

    Предмет, история развития, цели и задачи биотехнологии как научной дисциплины. Конструирование и введение ДНК в клетку. Технология производства водорослей Spirulina рlatensis и Spirulina maxima. Перспективные способы приготовления и применения заквасок.

Как известно, самые интересные открытия совершаются на стыке областей знания.


Одним из наиболее перспективных направлений в естественнонаучных дисциплинах сегодня стала биотехнология, возможности которой пока что изучены довольно слабо. Этот важный раздел биологической науки вполне может стать основой для технологического рывка в ближайшем будущем, сыграв для XXI века ту же роль, какую для ХХ столетия сыграли химия и электроника.

Биотехнология – значение слова

В последние десятилетия слово «биотехнология» всё чаще встречается на страницах СМИ, в телепередачах и в интернете. Впервые о биотехнологиях заговорили в середине 70-х годов ХХ столетия в связи с новыми методиками изготовления лекарственных субстанций – сырья для препаратов, выпускаемых фармакологической промышленностью. С тех пор биотехнологии существенно расширили сферу применения.

Сегодня, говоря о биотехнологии, мы подразумеваем методы производства нужных нам материалов и продуктов с использованием живых организмов, культивируемых в искусственной среде клеток и разнообразных биологических процессов. На текущий момент объектами биотехнологии чаще всего становятся микроорганизмы, а также отдельно взятые клетки животных или растений.

Простейшим примером биотехнологии является изготовление кисломолочных продуктов – кефира, творога и др. – при помощи культур кисломолочных бактерий. Можно вспомнить и о выпекании дрожжевого хлеба с использованием пекарских дрожжей. Эти биотехнологии известны человечеству на протяжении многих веков, но сегодня биологи используют намного более сложные методики, чтобы организовывать необходимые нам процессы.

Для чего нужна биотехнология?

В любой отрасли промышленности добиться нужного результата можно разными способами, но часто биотехнологическое решение поставленной перед учёными задачи оказывается наиболее эффективным, экономичным и безопасным. К примеру, для того, чтобы высечь на мраморе надпись, квалифицированный каменотёс должен трудиться несколько недель.

Однако в Древней Греции для изготовления надписей использовали один из видов улиток, слизь которых обладает повышенной кислотностью. Как известно, мрамор – это кристаллизовавшийся известняк. Проползая по поверхности камня, улитка своей слизью выжигала в нём выемку, и мастеру оставалось лишь направить моллюска в нужную сторону, чтобы быстро и без труда получить желаемую надпись.

Этот пример простейшей биотехнологии прекрасно иллюстрирует все преимущества биологических методов. Биохимические процессы не требуют высокой температуры и давления, не загрязняют окружающую среду и зачастую обходятся намного дешевле традиционных способов. Так, биотехнология сегодня активно используется для обогащения различных руд и добычи редких металлов. Функцию обогатителя выполняют микроорганизмы, которые поглощают нужный металл и накапливают его в своей ткани, а затем отмирают, образуя плотный осадок, из которого уже не составляет труда извлечь необходимый элемент.


Биотехнология позволяет перерабатывать даже очень бедные руды, извлекая из них нужные металлы с высокой точностью и без лишних затрат.

Эти же процессы используются и для эффективной очистки стоков. Если использовать фильтрацию, то очистные сооружения обойдутся очень дорого. Штаммы специально выведенных бактерий извлекают тяжёлые металлы, перерабатывают и делают безопасными нефтепродукты. Очистка стоков не требует затрат: достаточно залить сточные воды в отстойник и запустить туда нужные виды микроорганизмов, а затем подождать, пока вода не осветлится.

Но наиболее часто биотехнология используется для изготовления различных лекарственных препаратов. С её помощью производятся сотни или даже тысячи наименований и групп лекарств: антибиотики, сыворотки, различные вакцины и т.д. Отдельной группой препаратов являются кормовые добавки – аминокислоты, белки и др.

Сферы применения биотехнологии

На текущий момент наиболее активно биотехнологии работают в следующих направлениях:

— производство пищевых продуктов на качественно новой основе;

— разработка и изготовление препаратов, повышающих эффективность сельского хозяйства;

— разработка и изготовление лекарств, вакцин, биодобавок;

— биотехнологии для добывающей промышленности и бытовой сферы;

— изготовление диагностических препаратов и реактивов;

— биотехнология очистки окружающей среды от антропогенных загрязнений.

Существует ещё немало направлений, в которых использование биотехнологии возможно в ближайшей либо отдалённой перспективе.

Направления биотехнологии

Используя живые организмы в своих целях, человек уже сегодня может добывать необходимые вещества, перерабатывать отходы в полезные удобрения, лечить различные болезни и многое другое. Наиболее активно в настоящее время развиваются следующие направления биотехнологии.

Микробиологический синтез – производство необходимых веществ и субстанций с использованием микроорганизмов. Уже сегодня этот способ используется при производстве спирта, иммобилизованных ферментов и ряда других веществ.

Генная инженерия – своеобразное «конструирование» генома живого существа с целью получения организма с заданными свойствами. Методы генной инженерии в последние десятилетия произвели буквально революцию в сельском хозяйстве, создав новые, чрезвычайно устойчивые к неблагоприятным внешним явлениям культурные растения.

Космическая биотехнология – направление, находящееся сегодня в стадии начального развития. Ведутся исследования по применению биотехнологии в космосе, исследуются перспективы получения кристаллических белков и других материалов.

Биогидрометаллургия – извлечение металла из руды при помощи микроорганизмов. В результате деятельности бактерий образуются растворимые соли металла, которые переходят в раствор, а затем извлекаются и перерабатываются обычным способом.


В недалёком будущем биотехнологические процессы смогут заменить многие грязные производства, сделав окружающий нас мир более привлекательным, безопасным и удобным для жизни.

Сегодня перед биотехнологом стоит много нерешённых технологических задач. Можно изменять биологические организмы для обеспечения потребностей людей с помощью клеточных и генно-инженерных методов. Например, улучшать качество продуктов, получать новые виды растений и модифицировать животных, придавать живым организмам необходимые свойства и создавать новые лекарственные препараты методами генной инженерии, искусственного отбора, гибридизации.

Однако, чтобы работать биотехнологом, нужно знать не только генетику, молекулярную биологию, биохимию, клеточную биологию, но также ботанику, химию, математику, информационные технологии, физику и другое. Грубо говоря, биотехнологи - это инженеры в области естественных и точных наук. Генеральный директор инновационной биотехнологической Biocad Дмитрий Морозов рассказал об этой интересной профессии и будущем биотехнологий.

Biocad - это международная инновационная биотехнологическая компания. В ней есть научно-исследовательский центр, проводятся доклинические и клинические исследования собственных фармацевтических препаратов. Департамент перспективных исследований Biocad занимается разработкой лекарственных препаратов передовой генной и клеточной терапии, а, кроме того, поиском и анализом сигнальных путей, закономерностей и мишеней, которые позволяют разрабатывать препараты превентивной медицины.

Дмитрий Морозов,

генеральный директор компании Biocad

Что такое биотехнология?

Биотехнология - это использование живых систем, клеток, организмов для практических нужд человека. То есть использование современной науки для манипуляции с живыми объектами, чтобы получить некую выгоду и улучшить жизнь человека.

Биотехнология отталкивается от потребностей. Например, не зря люди ездят на север и изучают гейзеры. Они понимают, что 10 лет могут искать и ничего не найти. Но они всё равно это делают, потому что рано или поздно найдут какую-нибудь бактерию, которая позволит делать дешёвое биотопливо, используя один ген этой бактерии. Так или иначе каждый человек, когда занимается наукой, надеется её применить (кроме теоретических физиков, хотя, наверное, они тоже захотели бы в космос полететь). В компании Biocad мы используем микроорганизмы для создания лекарств.

В биотехнологии много дисциплин, и все успешные проекты и направления связаны с их комбинацией.

Говорят, все открытия происходят на стыке разных специальностей: математика, биология - биоинформатика; биология, химия - биохимия; медицина, информатика, биология - биомедицинская информатика. Это всё отдельные блоки, которыми занимаются разные люди. Биотехнология сегодня, наверное, более всего уделяет внимание созданию лекарств разных типов. Кроме фармацевтического направления биотехнологии интересно сельское хозяйство (улучшение свойств еды), экология, энергетика (получение биотоплива) и прочее. И, конечно, в будущем можно думать о коррекции человека.

Генная инженерия и биотехнология

В биотехнологии важное место занимает генная инженерия. Она широко распространена в исследованиях, однако вовсе не обязательно использовать её методы, чтобы получить полезные свойства у объекта. Например, можно разобраться в особенностях метаболизма организма: как он живёт в нормальной среде обитания и что получится, если мы переведём его в другую среду обитания, с другими питательными факторами, в другую атмосферу - возможно, это поможет ему в итоге, и это может быстрее размножаться. Но это же не генная инженерия.

Биотехнология - это манипуляции со знаниями, которые есть о данном объекте. Генная инженерия просто расширяет круг возможностей, разных комбинаций, даёт возможность совершать манипуляции на уровне молекул, поэтому более точна.

Биотехнология на самом деле существует столько, сколько сельское хозяйство. В сельском хозяйстве часто есть конкретная практическая цель - например, вывести породу быстрых лошадей или устойчивое к холоду растение. Этим люди занимаются уже сотни лет с помощью селекции, которая на самом деле является генетическим методом отбора.

Биотехнологическая этика: как общество относится к биотеху?

Люди по-разному воспринимают нововведения в биотехнологии. Есть негативные и позитивные примеры восприятия.

Негативные - это, например, мнение, что внедрение нового приведёт к появлению вирусов, которые будут распространяться по всему миру и от которых нет ни вакцины, ни лечения, и что периодические эпидемии именно с этим и связаны.

Из позитивных - например, можно создать вирус, который на время меняет цвет глаз. Постепенно они становятся своего цвета, и каплями антибиотиков можно снова сделать их голубыми. Это мало связано со здравоохранением в привычном смысле, но всё равно здорово. Подобные манипуляции уже в теории можно делать, и к таким технологиям общество относится позитивно и с улыбкой. Однако в целом люди боятся внедрения новых технологий. Да и чтобы внедрить новое, нужно на высшем уровне обсудить этические вопросы того или иного воздействия препарата, и обычно это происходит долго.

Биотехнология в Biocad: лечение нуклеиновой кислотой

Два года назад в Biocad мы открыли Департамент перспективных исследований, основная цель которого - создание лекарственных продуктов передовой генной терапии. Этот термин объединяет три группы лекарственных препаратов, которые не похожи на все остальные лекарства, к которым мы привыкли.

Во-первых, это препараты для генной терапии, во-вторых, это препараты, в основе которых лежит манипуляция с соматическими и стволовыми клетками человека, в-третьих, это препараты тканевой инженерии.

В основе действия классических лекарств лежит либо малая молекула химической природы, либо какой-то белок, например, антитело, который можно легко получить с помощью биотехнологических методов. В нашей разработке лекарственным веществом, то есть действующим фактором, является нуклеиновая кислота РНК или ДНК.

Это новый способ воздействия на организм человека. Это направление не так давно стало бурно развиваться, поэтому к нему пока что относятся с осторожностью.

Как работают препараты для генной терапии

Наше лекарство - это рекомбинантный вирус, наночастица на базе вируса, внутри которой находится ген, которого недостаёт больному человеку. Направлены эти продукты, как правило, на заболевания, которые плохо поддаются лечению (наследственные заболевания с тяжёлыми проявлениями вплоть до летального исхода в раннем возрасте: дистрофия, нарушение зрения, световосприятия, иммунодефициты). Это в основном моногенные заболевания, в которых проявление болезни обусловлено дефектом одного гена. В таких случаях они очень хорошо лечатся. В лаборатории мы создаем терапевтические вирусные частицы, а биоинформатики помогают нам моделировать их работу.

В случае полигенных заболеваний , например, рака, можно использовать методы генной терапии для модификаций клеток иммунной системы человека, чтобы получать иммунные клетки с высокой специфичностью к опухолевым клеткам. В лабораториях наши учёные осуществляют полный цикл разработки этих двух типов продуктов (от идеи до создания прототипов, готовых для тестирования на животных). Такого в России нет, наверное, нигде.

Перспективные исследования в биотехнологии

медицина будущего: Развитие новых типов лекарств

Наш департамент назван по аналогии с Управлением перспективных исследовательских проектов США (DARPA). Они пытаются внедрять достижения науки в целях увеличения обороноспособности страны - это ускоренная регенерация, универсальные доноры, оружие и прочее.

Возможно, в ближайшие 5-10 лет благодаря взаимосвязи кибернетики и биотехнологии действительно будут созданы умные лекарства. Например, создание очень маленьких чипов : это капсула или робот с частицами лекарственного средства, циркулирующие в крови, из которых в зависимости от состояния человека нужное вещество будет впрыскиваться в кровь. Подобным занимаются, например, в MIT. Уже есть успешные примеры: в зависимости от уровня глюкозы в организм вбрасывается инсулин, что минимизирует степень инвазивности лечебной процедуры. Человек один раз внедрил чип, сделал инъекцию и на очень длительное время забыл, что нужно принимать лекарство.

Даже известный футуролог Рэй Курцвелл говорит, что люди начнут жить дольше с помощью нанороботов к 2025 году. Скорее всего, он имеет ввиду препараты, которые будут бороться с онкологическими заболеваниями.

Нанороботы - новый формат препаратов, потому что с точки зрения веществ, из которых состоят лекарства, люди уже всё сделали. Мы ничего больше предложить не можем - типов химических соединений, которые можно использовать для терапии немного. Это либо белки, либо малые молекулы, либо нуклеиновые кислоты , которые теперь тоже применяются.

Вариантов и тех, и других, и третьих, конечно, можно сделать безграничное количество, но они имеют ограниченный потенциал применения, так как работают по общим химическим принципам. По-другому воздействовать на клетку уже никак невозможно.

Поэтому в будущем главным вопросом будет доставка нанороботами этих трёх «блоков», что приведет к появлению новых форматов терапии.

Конечно, большинство хочет просто принять таблетку, но не все лекарственные вещества можно в неё «вложить». Более простой вариант - капсула. Более эффективный - инъекция и суппозитории. И если был бы какой-то универсальный способ лечения, например, закалывать какой-то чип с концентратом лекарственного средства под кожу, но раз в год, думаю, многие бы на это пошли.

Фото предоставлено компанией Biocad.

Диагностика заболеваний

Развитие малоинвазивных методов диагностики будет нужно человеку, чтобы, грубо говоря, по капле крови можно было быстро определять состояние человека: есть ли у него онкологическое заболевание и, если да, то есть ли метастазы, что за рак и прочее.

Сейчас это можно делать по определённому количеству миллилитров крови с помощью высокопроизводительных методов, но пока это довольно дорого. Мы идём к индивидуальному профилированию человека, чтобы знать про себя всё до уровня молекулы. Человек будет понимать, что конкретно с ним происходит в данный момент.

Может возникнуть нечто вроде социальной сети профайлов, где будут храниться все данные - например, по экспрессии генов за последний месяц. Кажется, что здесь всё легко, но на самом деле это миллиарды последовательностей, сотни генов с разными мутациями, разной степени значимости. Поэтому нужен будет новый класс врачей-теоретиков, которые будут уметь интерпретировать это огромное количество данных.

Регенерация, искусственный интеллект

Наверное, в будущем мы научимся регенерировать ткани и органы. Уже сейчас выращивают органы с нуля до реального размера из клетки благодаря 3D-печати. Также пытаются восстанавливать спинной мозг после травмы - печатать нейроны в месте повреждения. Иными словами, прививать человеку его же клетки, размноженные в лабораторных условиях.

Также учёные будут больше использовать искусственный интеллект и нейросети, чтобы создавать новые лекарственные препараты. Самообучающийся ИИ должен будет сам накапливать достаточное количество знаний, которые позволят ему давать правильные ответы. Если это не контролировать, может, наверное, произойти катастрофа, но, с другой стороны, он сможет значительно развязать руки исследователям и дать возможность генерировать новые идеи, ведь ИИ будет брать на себя все рутинные процедуры.

Биотехноло́гия - дисциплина, изучающая возможности использования живых организмов , их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии .

Биотехнологией часто называют применение генной инженерии в -XXI веках , но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и животных путём искусственного отбора и гибридизации . С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

До 1971 года термин «биотехнология» использовался, большей частью, в пищевой промышленности и сельском хозяйстве. С 1970 года учёные используют термин в применении к лабораторным методам, таким, как использование рекомбинантной ДНК и культур клеток , выращиваемых in vitro .

Биотехнология основана на генетике, молекулярной биологии, биохимии, эмбриологии и клеточной биологии, а также прикладных дисциплинах - химической и информационной технологиях и робототехнике.

Энциклопедичный YouTube

    1 / 5

    ✪ Биотехнологии: генные, хромосомные, клеточные

    ✪ Александр Панчин - Возможности генной инженерии

    ✪ Биотехнология. Основные методы биотехнологии

    ✪ 10 ДОСТИЖЕНИЙ ГЕННОЙ ИНЖЕНЕРИИ 2017 и начала 2018 года

    ✪ Генетическая инженерия. Биотехнология. Биологическое оружие, особенности воздействия

    Субтитры

История биотехнологии

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году .

Использование в промышленном производстве микроорганизмов или их ферментов , обеспечивающих технологический процесс, известно издревле, однако систематизированные научные исследования позволили существенно расширить арсенал методов и средств биотехнологии.

Наномедицина

Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры . В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся адресная доставка лекарств к больным клеткам , лаборатории на чипе, новые бактерицидные средства.

Биофармакология

Бионика

Искусственный отбор

Образовательная биотехнология

Основная статья: Оранжевые биотехнологии

Оранжевая биотехнология или образовательная биотехнология применяется для распространения биотехнологий и подготовки кадров в этой области. Она разрабатывает междисциплинарные материалы и образовательные стратегии, связанные с биотехнологиями (например, производство рекомбинантного белка) доступными для всего общества, в том числе для людей с особыми потребностями, например нарушениями слуха и / или ухудшением зрения.

Гибридизация

Процесс образования или получения гибридов , в основе которого лежит объединение генетического материала разных клеток в одной клетке. Может осуществляться в пределах одного вида (внутривидовая гибридизация) и между разными систематическими группами (отдалённая гибридизация, при которой происходит объединение разных геномов). Для первого поколения гибридов часто характерен гетерозис , выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов. При отдалённой гибридизации гибриды часто стерильны .

Генная инженерия

Зелёные светящиеся свиньи - трансгенные свиньи, выведенные группой исследователей из Национального университета Тайваня путём введения в ДНК эмбриона гена зелёного флуоресцентного белка , позаимствованного у флуоресцирующей медузы Aequorea victoria . Затем эмбрион был имплантирован в матку самки свиньи. Поросята светятся зелёным цветом в темноте и имеют зеленоватый оттенок кожи и глаз при дневном свете. Основная цель выведения таких свиней, по заявлениям исследователей, - возможность визуального наблюдения за развитием тканей при пересадке стволовых клеток.